Citation: Ren Xiang, Zhang Xiaoping, Wang Yufen, Cao Jingyu, Cheng Yuanyuan, Feng Shouhua, Chen Huanwen. Intramolecular and Intermolecular Methyl Migration of Fenthion Studied by Electrospray Ionization Mass Spectrometry[J]. Acta Chimica Sinica, ;2019, 77(4): 358-364. doi: 10.6023/A18120505 shu

Intramolecular and Intermolecular Methyl Migration of Fenthion Studied by Electrospray Ionization Mass Spectrometry

  • Corresponding author: Feng Shouhua, shfeng@jlu.edu.cn Chen Huanwen, chw8868@gmail.com
  • Received Date: 17 December 2018
    Available Online: 25 April 2019

    Fund Project: the Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation Open Fund JXMS201803Project of Jiangxi Provincial Department of Education GJJ160574the National Natural Science Foundation of China 21427802Project supported by the National Natural Science Foundation of China (No. 21427802), the National Natural Science Foundation of China (No. 21520102007, 21605017), Project of Jiangxi Provincial Department of Education (No. GJJ160574), and the Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation Open Fund (JXMS201803)the National Natural Science Foundation of China 21520102007the National Natural Science Foundation of China 21605017

Figures(9)

  • Methyl transfer reactions are of great significance in the field of synthetic chemistry and life sciences. So far, most of the reported methyl migration reactions have occurred between different types of molecules. Therefore, it is of certain value to search for new methyl transfer reactions. In this study, fenthion, a most common insecticide in the environment, was selected as the studied object, and electrospray ionization mass spectrometry (ESI-MS) was used as the analytical tool to conduct highly sensitive analysis of the reaction system, so as to explore the possibility of methyl transfer reaction in fenthion molecules under the condition of trifluoroacetic acid and nanometer titanium dioxide. Other than m/z 279 (protonated fenthion), some new product ions (m/z 293 and m/z 265) could be observed in the fingerprint MS of fenthion reaction solution. Tandem MS experiments showed that the intensity of product ion m/z 231 (elimination of CH3SH) in the dissociation of m/z 279 from fenthion reaction solution were different from that from protonated fenthion standard. This indicated that the methyl in the fenthion could transfer from oxygen atom to unsaturated sulfur atom via 1, 3-methyl transfer, forming isomer a2, which led to the high intensity of product ion m/z 231 in the dissociation of m/z 279 from fenthion reaction solution. Under the assistance of acid, the methyl cation continued to transfer from sulfur atom in a2 to the unsaturated sulfur atom in another fenthion molecule, forming a3 (m/z 293) and a4 via intermolecular methyl transfer reaction, which was verified by tandem MS experiments of ions at m/z 293 and m/z 265. In addition, density functional theory (DFT) calculations were carried out to confirm the mechanism of intramolecular and intermolecular methyl transfer reactions of fenthion. In order to observe the phenomenon of methyl transfer more intuitively, the effects of different acids, metal oxides, reaction time and reaction temperature on the signal intensities of ions at m/z 265 and m/z 293 of intermolecular methyl transfer reactions of fenthion were investigated. It could be concluded that under the conditions of trifluoroacetic acid and nanometer titanium dioxide, and 60℃ ultrasound reaction for 6 h, the proportion of intermolecular methyl transfer reactions of fenthion was the highest. In this study, intramolecular and intermolecular methyl transfer reactions were both discovered and investigated in fenthion, which can not only provide a method to study methyl transfer reactions, but also propose a new idea for the study of degradation of fenthion.
  • 加载中
    1. [1]

      Dakternieks, D.; Lim, A. E. K.; Lim, K. F. Chem. Commun. 1999, 15, 1425.

    2. [2]

      Shekar, S.; Brown, S. N. J. Org. Chem. 2014, 79, 12047.  doi: 10.1021/jo501888r

    3. [3]

      Schmidt, T.; Schwede, T.; Meuwly, M. J. Phys. Chem. B 2014, 118, 5882.  doi: 10.1021/jp5028564

    4. [4]

      Lukinavicius, G.; Lapiene, V.; Stasevskij, Z.; Dalhoff, C.; Weinhold, E.; Klimasauskas, S. J. Am. Chem. Soc. 2007, 129, 2758.  doi: 10.1021/ja0691876

    5. [5]

      Khaskin, E.; Zavalij, P. Y.; Vedernikov, A. N. J. Am. Chem. Soc. 2008, 130, 10088.  doi: 10.1021/ja804222c

    6. [6]

      Shekar, S.; Brown, S. N. Organometallics 2013, 32, 556.  doi: 10.1021/om301028c

    7. [7]

      Jones, P. A.; Takai, D. Science 2001, 293, 1068.  doi: 10.1126/science.1063852

    8. [8]

      Klose, R. J.; Bird, A. P. Trends Biochem. Sci. 2006, 31, 89.  doi: 10.1016/j.tibs.2005.12.008

    9. [9]

      Finnegan, E. J.; Peacock, W. J.; Dennis, E. S. Curr. Opin. Genet. Dev. 2000, 10, 217.  doi: 10.1016/S0959-437X(00)00061-7

    10. [10]

      Xiong, L.; Ping, L.; Yuan, B.; Wang, Y. J. Am. Soc. Mass Spectrom. 2009, 20, 1172.  doi: 10.1016/j.jasms.2009.02.014

    11. [11]

      Hughes, R. M.; Waters, M. L. J. Am. Chem. Soc. 2005, 127, 6518.  doi: 10.1021/ja0507259

    12. [12]

      Callahan, B. P.; Wolfenden, R. J. Am. Chem. Soc. 2003, 125, 310.  doi: 10.1021/ja021212u

    13. [13]

      Zhang, X.; Wang, H.; Liao, Y.; Ji, H.; Guo, Y. J. Mass Spectrom. 2010, 42, 218.

    14. [14]

      Kshirsagar, U. A.; Argade, N. P. Tetrahedron 2009, 65, 5244.  doi: 10.1016/j.tet.2009.04.088

    15. [15]

      Zhang, X. J. Mol. Struc.-Theochem. 2010, 955, 91.  doi: 10.1016/j.theochem.2010.06.008

    16. [16]

      Zhang, X.; Yao, S.; Guo, Y. Int. J. Mass Spectrom. 2008, 270, 31.  doi: 10.1016/j.ijms.2007.11.007

    17. [17]

      Reepmeyer, J. C. Rapid Commun. Mass Spectrom. 2010, 23, 927.

    18. [18]

      Gao, X.; Zhu, G.; Zeng, Z.; Chen, W.; Lin, Z.; Liu, Y.; Xu, P.; Zhao, Y. Rapid Commun. Mass Spectrom. 2011, 25, 1061.  doi: 10.1002/rcm.4955

    19. [19]

      Ammal, S. C.; Yamataka, H.; Aida, M. A.; Dupuis, M. Science 2003, 299, 1555.  doi: 10.1126/science.1079491

    20. [20]

      Kitamura, S.; Kadota, T.; Yoshida, M.; Jinno, N.; Ohta, S. Comp. Biochem. Phys. C 2000, 126, 259.

    21. [21]

      Bai, C. L.; Qiao, C. B.; Zhang, W. D.; Chen, Y. L.; Qu, S. X. Biomed. Environ. Sci. 1990, 3, 262.

    22. [22]

      Ben Amara, I.; Sefi, M.; Troudi, A.; Soudani, N.; Boudawara, T.; Zeghal, N. Indian J. Biochem. Bio. 2014, 51, 293.

    23. [23]

      Cheke, R. A.; Mcwilliam, A. N.; Mbereki, C.; Van Der Walt, E.; Mtobesya, B.; Magoma, R. N.; Young, S.; Eberly, J. P. Ecotoxicology 2012, 21, 1761.  doi: 10.1007/s10646-012-0911-6

    24. [24]

      Celik, I.; Isik, I.; Ozok, N.; Kaya, M. S. Toxicol. Ind. Health 2011, 27, 357.  doi: 10.1177/0748233710387009

    25. [25]

      Eckstein, F.; Gish, G. Trends Biochem. Sci. 1989, 14, 97.  doi: 10.1016/0968-0004(89)90130-8

    26. [26]

      Frey, P. A.; Sammons, R. D. Science 1985, 228, 541.  doi: 10.1126/science.2984773

    27. [27]

      Wilkins, E.; Carter, M.; Voss, J.; Ivnitski, D. Electrochem. Commun. 2000, 2, 786.  doi: 10.1016/S1388-2481(00)00122-3

    28. [28]

      Chen, P. S.; Huang, S. D. Talanta 2006, 69, 669.  doi: 10.1016/j.talanta.2005.10.042

    29. [29]

      Salm, P.; Taylor, P. J.; Roberts, D.; Silva, J. D. J. Chromatogr. B 2009, 877, 568.  doi: 10.1016/j.jchromb.2008.12.066

    30. [30]

      You, Z.-S.; Wen, Y.-J.; Jiang, K.-Z.; Pan, Y.-J. Chin. Sci. Bull. 2012, 57, 1183.
       

    31. [31]

      Zhang, J.; Chai, Y. F.; Wang, W.; Shang, W.; Pan, Y. J. Chinese J. Chem. 2012, 30, 2383.  doi: 10.1002/cjoc.201200610

    32. [32]

      Chai, Y.-F.; Gan, S.-F.; Pan, Y.-J. Acta Chim. Sinica 2012, 70, 1805.
       

    33. [33]

      Yin, X.-C.; Jiang, Y.; Chu, S.-Y.; Weng, G.-F.; Fang, X.; Pan, Y.-J. Acta Chim. Sinica 2018, 76, 436.  doi: 10.11862/CJIC.2018.053
       

    34. [34]

      Zhang, X. P.; Chen, H. H.; Ji, Y.; Jiang, K. Z.; Chen, H. W. J. Am. Soc. Mass Spectrom. 2018, doi.org/10.1007/s13361-018-2098-4.

    35. [35]

      Newman, M. S.; Karnes, H. A. J. Org. Chem. 1966, 31, 3980.  doi: 10.1021/jo01350a023

  • 加载中
    1. [1]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    14. [14]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    15. [15]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    16. [16]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

Metrics
  • PDF Downloads(8)
  • Abstract views(1605)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return