Citation: Liu Jiao, Sun Hailong, Yin Lu, Yuan Yaxian, Xu Minmin, Yao Jianlin. On-line Monitoring on the Micro-synthesis of α-Phenylethanol by Microfluidic Chip Combined with Surface Enhanced Raman Spectroscopy[J]. Acta Chimica Sinica, ;2019, 77(3): 257-262. doi: 10.6023/A18100434 shu

On-line Monitoring on the Micro-synthesis of α-Phenylethanol by Microfluidic Chip Combined with Surface Enhanced Raman Spectroscopy

  • Corresponding author: Yuan Yaxian, yuanyaxian@suda.edu.cn Yao Jianlin, jlyao@suda.edu.cn
  • Received Date: 17 October 2018
    Available Online: 29 March 2018

    Fund Project: the National Natural Science Foundation of China 21673152Project supported by the National Natural Science Foundation of China (Nos. 21673152, 21773166) and the Scientific and Technologic Infrastructure of Suzhou (No. SZS201708)the Scientific and Technologic Infrastructure of Suzhou SZS201708the National Natural Science Foundation of China 21773166

Figures(7)

  • Surface Enhanced Raman Spectroscopy (SERS) has been developed as one of powerful tools for monitoring the organic reaction due to its extremely high sensitivity. Moreover, SERS provided the abundant fingerprint spectroscopic information for the structure analysis, and it could be integrated with other techniques to achieve the on-line detection. Microfluidic technology, due to its significant role in the miniaturization, integration and portability of instrument, exhibits the promising application in biomedicine, high throughput drug screening, the environment monitoring and protection. In recent years, the microfluidic chip as one of the modern technology for analyzing various substances at the same time has been rapidly developed. Compared with the conventional technique, it has the significant advantage and convenience, such as low reagent consumption, short reaction time, high reaction efficiency and so on. Herein, the microfluidic chip was employed as the microreactor for organic reaction with the ultralow dosage, and the SERS detection was integrated into the microreactor to realize the continuous monitoring on the substrates and products. The magnetic core-shell nanoparticles Fe3O4@Ag acted as the SERS substrate with reasonable magnetism and SERS activities, and it demonstrated that the magnetic nanoparticles was flowed in the microchannel of microfluidic chip and was enriched by the external magnetic field. The introduction of magnetic nanoparticles is beneficial to improve the detection sensitivity by the magnetic aggregation and to reach the continuous SERS detection by applying and retracting external magnetic field. At the same time, it exhibited the significant advantages of low amount of reactants, high efficiency and easy to realize on-line detection and high throughput screening in organic synthesis. The micro-synthesis of α-phenylethanol and the real-time monitoring of SERS are performed by the alternative enrichment and de-enrichment of magnetic nanoparticles in the present case. By changing the flow rate of reactants in the channel of microfluidic chip, different concentrations of reactants and products were obtained in a certain duration. The influence of the spectral features from the reactants was eliminated by differential spectrum technique, and the distinctive SERS spectrum of α-phenylethanol was presented accordingly. It demonstrated that the integration of microfluidic chip and SERS technique could be developed as a powerful tool for on-line monitoring organic reactions and exhibits the promising application in high throughput screening of organic chemical reactions.
  • 加载中
    1. [1]

      Zhao, Y.; Zhang, Y. L.; Huang, J. A.; Zhang, Z.; Chen, X.; Zhang, W. J. Mater. Chem. A 2015, 3, 6408.  doi: 10.1039/C4TA07076C

    2. [2]

      Parisi, J.; Dong, Q.; Lei, Y. RSC Adv. 2015, 5, 14081.  doi: 10.1039/C4RA15174G

    3. [3]

      Yaghobian, F.; Weimann, T.; Guttler, B.; Stosch, R. Lab. Chip. 2011, 11, 2955.  doi: 10.1039/c1lc20032a

    4. [4]

      Miller, P. W.; Long, N. J.; de Mello, A. J.; Vilar, R.; Passchierc, J.; Gee, A. Chem. Commun. 2006, 5, 546.

    5. [5]

      Singh, R.; Lee, H. J.; Singh, A. K.; Kim, D. P. Korean J. Chem. Eng. 2016, 33, 2253.  doi: 10.1007/s11814-016-0114-6

    6. [6]

      Zhou, J. J.; Tang, Z. K.; Zhang, C.; Wang, D. T.; Zhang, K.; Sun, H. B. Chin. J. Org. Chem. 2016, 36, 2662.

    7. [7]

      Gao, Y. P.; Wang, J. B. Chin. J. Org. Chem. 2018, 38, 1275.

    8. [8]

      Norbert, K.; Philipp, T.; Christoph, F. T.; Gabriele, L.; Timothy, N. React. Chem. Eng. 2017, 2, 258.  doi: 10.1039/C7RE00021A

    9. [9]

      Elvira, K. S.; Casadevall, i.; Solvas, X.; Wootton, R. C. R.; de Mello, A. J. Nature Chem. 2013, 5, 905.  doi: 10.1038/nchem.1753

    10. [10]

      Huang, W. G.; Sun, H. F.; Zhang, S. J. Acta Chim. Sinica 2016, 74, 518.
       

    11. [11]

      Wang, H. S.; Lin, P. T.; Zhao, S. L.; Li, S. T.; Lu, X.; Liang, H. Chin. J. Chem. 2017, 35, 943.  doi: 10.1002/cjoc.v35.6

    12. [12]

      Zhang, X. N.; Stefanick, S.; Villani, F. J. Org. Process Res. Dev. 2004, 8, 455.  doi: 10.1021/op034193x

    13. [13]

      Jin, J.; Cai, M. M.; Li, J. X. Synlett 2009, 15, 2534.

    14. [14]

      Kong, L. J.; Lin, Q.; Lv, X. M.; Yang, Y. T.; Jia, Y.; Zhou, Y. M. Green Chem. 2009, 11, 1108.  doi: 10.1039/b822513c

    15. [15]

      Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Science 2002, 297, 1536.  doi: 10.1126/science.297.5586.1536

    16. [16]

      Long, H. X.; Zhen, Z.; Tang, L. J.; Jiang, J. H. Acta Chim. Sinica 2013, 71, 739.
       

    17. [17]

      Li, C. Y.; Lai, K. Q.; Zhang, Y. Y.; Pei, L.; Huang, Y. Q. Acta Chim. Sinica 2013, 71, 221.
       

    18. [18]

      Li, X. H.; Chen, G. Y.; Yang, L. B.; Jin, Z.; Liu, J. H. Adv. Funct. Mater. 2010, 20, 2815.  doi: 10.1002/adfm.201000792

    19. [19]

      Liu, W. J.; Zhu, Z. N.; Deng, K.; Li, Z.; T.; Zhou, Y. L.; Qiu, H. B.; Gao, Y.; Che, S.; Tang, Z. T. J. Am. Chem. Soc. 2013, 135, 9659.  doi: 10.1021/ja312327m

    20. [20]

      Gao, Z. G.; Zheng, T. T.; Deng, J.; Li, X. R.; Qu, Y. Y.; Lu, Y.; Liu, T. J.; Luo, Y.; Zhao, W. J.; Lin, B. C. Acta Chim. Sinica 2017, 75, 355.
       

    21. [21]

      Wang, Y.; Rauf, S.; Grewal, Y. S.; Spadafora, L. J.; Shiddiky, M. J.; Cangelosi, G. A.; Schlucker, S.; Trau, M. Anal. Chem. 2014, 86, 9930.  doi: 10.1021/ac5027012

    22. [22]

      Huh, Y. S.; Lowe, A. J.; Strickland, A. D.; Batt, C. A.; Erickson, D. J. Am. Chem. Soc. 2009, 131, 2208.  doi: 10.1021/ja807526v

    23. [23]

      Wang, C.; Yu, C. Nanotechnology 2015, 26, 092001.  doi: 10.1088/0957-4484/26/9/092001

    24. [24]

      Wang, W.; Xu, M. M.; Guo, Q. H.; Yuan, Y. X.; Shen, L. M.; Gu, R. A.; Yao, J. L. RSC Adv. 2015, 5, 47640.  doi: 10.1039/C5RA05562H

    25. [25]

      Mao, H.; Wu, W.; She, D.; Sun, G.; Lv, P.; Xu, J. Small 2014, 10, 127.  doi: 10.1002/smll.201300036

    26. [26]

      Xu, B. B.; Zhang, R.; Liu, X. Q.; Wang, H.; Zhang, Y. L.; Jiang, H. B.; Wang, L.; Ma, Z. C.; Ku, J. F.; Xiao, F. S.; Sun, H. B. Chem. Commun. 2012, 48, 1680.  doi: 10.1039/C2CC16612G

    27. [27]

      Sun, H. L.; Xu, M. M.; Guo, Q. H.; Yuan, Y. X.; Shen, L. M.; Gu, R. A.; Yao, J. L. Spectrochim. Acta A 2013, 114, 579.  doi: 10.1016/j.saa.2013.05.098

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    4. [4]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    7. [7]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    8. [8]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    9. [9]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    10. [10]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    11. [11]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    12. [12]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    13. [13]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    14. [14]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    15. [15]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    16. [16]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    17. [17]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    18. [18]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(25)
  • Abstract views(1624)
  • HTML views(369)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return