Citation: He Tong, Yang Xiaofeng, Chen Yuzhe, Tong Zhenhe, Wu Lizhu. Triplet-Triplet Annihilation Upconversion Based on Silica Nanoparticles[J]. Acta Chimica Sinica, ;2019, 77(1): 41-46. doi: 10.6023/A18090374 shu

Triplet-Triplet Annihilation Upconversion Based on Silica Nanoparticles

  • Corresponding author: Yang Xiaofeng, xiaofengyang2008@126.com Chen Yuzhe, chenyuzhe@mail.ipc.ac.cn Wu Lizhu, lzwu@mail.ipc.ac.cn
  • Received Date: 6 September 2018
    Available Online: 23 January 2018

    Fund Project: the National Natural Science Foundation of China 21474124the National Natural Science Foundation of China 21871280Ministry of Science and Technology and Chinese Academy of Sciences Strategic Pilot Science and Technology Project (Class B) XDB17000000Ministry of Science and Technology and Chinese Academy of Sciences Strategic Pilot Science and Technology Project (Class B) 21474124Ministry of Science and Technology and Chinese Academy of Sciences Strategic Pilot Science and Technology Project (Class B) 21871280Project supported by the National Natural Science Foundation of China (Nos. 21871280, 21474124), Ministry of Science and Technology (Nos. 2014CB239402 and 2017YFA0206903) and Chinese Academy of Sciences Strategic Pilot Science and Technology Project (Class B) (XDB17000000)

Figures(9)

  • Photon upconversion based on triplet-triplet annihilation (TTA) composed of organic photosensitizer and emitter, has attracted widespread attention due to its unique photophysical properties and enormous applications in photovoltaic cells, photocatalysis, bio-imaging, and photodynamic therapy. Particularly, in biological systems, long-wavelength excitation light can efficiently reduce the interference of background fluorescence and increase the penetration depth of biological tissue, thereby avoiding the use of high-energy excitation light and reducing the damage to biological samples. However, most of the upconversion dyes based on TTA mechanism are water-insoluble organic compounds, which greatly limits their application in the biological field. Herein we synthesized a TTA upconversion system based on silica nanoparticles, which can achieve upconversion emission in water. Specifically, the photosensitizer (fluorinated tetraphenylporphyrin platinum) and the emitter (siloxane derivatized 9, 10-diphenylanthracene) for photon upconversion were designed and synthesized, whose upconversion performance in dichloromethane solution was firstly studied by UV-Vis spectrophotometer and fluorescence spectrometer. Clear blue upconversion emission from emitter could be observed when the photosensitizer was excited by 532 nm laser. The triplet energy transfer efficiency between photosensitizer and emitter is 60%. The optimal ratio of photosensitizer to emitter was 1:40. Based on this ratio, the stable upconversion silica nanoparticles with uniform size in water were constructed by micellar template method. The average diameter characterized by transmission electron microscopy (TEM) is 15.5 nm and the hydration diameter characterized by dynamic light scattering (DLS) is 22.5 nm. When the 532 nm laser is used as the excitation source, the upconversion emission in water was achieved. Their upconversion luminescence lifetime and quantum yield are 12 μs and 0.8%, respectively. Finally, the upconversion mechanism in silica nanoparticles was studied. The upconversion intensities in silica nanoparticles show quadratic and first-order dependences on the incident intensity in the low and high excitation intensity ranges respectively, proving a triplet-triplet annihilation mechanism.
  • 加载中
    1. [1]

    2. [2]

      Parker, C. A.; Hatchard, C. G. Proc. R. Soc. London, Ser. A 1962, 269, 574.  doi: 10.1098/rspa.1962.0197

    3. [3]

      Parker, C. A. Proc. R. Soc. London, Ser. A 1963, 276, 125.  doi: 10.1098/rspa.1963.0197

    4. [4]

    5. [5]

      Khnayzer, R. S.; Blumhoff, J.; Harrington, J. A.; Haefele, A.; Deng, F.; Castellano, F. Chem. Commun. 2012, 48, 209.

    6. [6]

      (a) Wang, Z. J.; Zhao, J. Z.; Barbon, A.; Toffoletti, A.; Liu, Y.; An, Y. L.; Xu, L.; Karatay, A.; Yaglioglu, H. G.; Yildiz, E. A.; Hayvali, M. J. Am. Chem. Soc. 2017, 139, 23. (b) Cui, X. N.; Zhao, J. Z.; Zhou, Y. H.; Ma, J.; Zhao, Y. L. J. Am. Chem. Soc. 2014, 136, 9256. (c) Zhang, C. S.; Zhao, J. Z.; Wu, S.; Wang, Z. L.; Wu, W. H.; Ma, J.; Guo, S.; Huang, L. J. Am. Chem. Soc. 2013, 135, 10566. (d) Wu, W. H.; Guo, S.; Zhao, J. Z. Sci. China Chem. 2012, 42, 1381. (伍晚花, 郭颂, 赵建章, 中国科学: 化学, 2012, 42, 1381.)(e) Ma, L. H.; Guo, S.; Zhao, J. Z.; Guo, H. M. Chin. Sci. Bull. 2014, 59, 1655. (马丽花, 郭颂, 赵建章, 郭慧敏, 科学通报, 2014, 59, 1655.)(f) Wan, S. G.; Lin, J. X.; Su, H. M.; Dai, J. F.; Lu, W. Chem. Commun. 2018, 54, 3907.

    7. [7]

      Khnayzer, R. S.; Blumhoff, J.; Harrington, J. A.; Haefele, A.; Deng, F.; Castellano, F. Chem. Commun. 2012, 48, 209.  doi: 10.1039/C1CC16015J

    8. [8]

      Kwon, O. S.; Kim, J. H.; Cho, J. K.; Kim, J. H. ACS Appl. Mater. Interfaces 2017, 7, 318.
       

    9. [9]

      Guo, C.; Li, M. G. Acta Chim. Sinica 2014, 72, 215.  doi: 10.7503/cjcu20130931
       

    10. [10]

      Wang, C.; Cheng, L.; Liu, Z. Theranostics 2013, 3, 317.  doi: 10.7150/thno.5284

    11. [11]

      Wohnhaas, C.; Mailänder, V.; Dröge, M.; Filatov, M. A.; Busko, D.; Avlasevich, Y.; Baluschev, S.; Miteva, T.; Landfester, K.; Turshatov, A. Macromol. Biosci. 2013, 13, 1422.  doi: 10.1002/mabi.201300149

    12. [12]

      Haase, M.; Schäfer, H. Angew. Chem., Int. Ed. 2011, 50, 5808.  doi: 10.1002/anie.v50.26

    13. [13]

      Tanaka, K.; Inafuku, K.; Chujo, Y. Chem. Commun. 2010, 46, 4378.  doi: 10.1039/c0cc00266f

    14. [14]

      Turshatov, A.; Busko, D.; Baluschev, S.; Miteva, T.; Landfester, K. New J. Phys. 2011, 13, 083035.  doi: 10.1088/1367-2630/13/8/083035

    15. [15]

      Monguzzi, A.; Frigoli, M.; Larpent, C.; Tubino, R.; Meinardi, F. Adv. Funct. Mater. 2012, 22, 139.  doi: 10.1002/adfm.201101709

    16. [16]

      Huo, Q. S.; Liu, J.; Wang, L. Q.; Jiang, Y. B. J. Am. Chem. Soc. 2006, 128, 6447.  doi: 10.1021/ja060367p

    17. [17]

      Sun, Y. H.; Zha, L. G. H.; Zhang, J. L.; Guan, C. X.; Zheng, L.; Li, W.; Qiao, J. J. Acta Chim. Sinica 2011, 69, 967.
       

    18. [18]

      (a) Petrizza, L.; Collot, M.; Richert, L.; Mely, Y.; Prodib, L.; Klymchenko, A. S. RSC Adv. 2016, 6, 104164. (b) Wang, C.; Chen, Y. Z.; Wu, D. Y. Chem. J. Chin. Univ. 2018, 39, 917. (王畅, 陈玉哲, 吴大勇, 高等学校化学学报, Chem. J. Chin. Univ. 2018, 39, 917.

    19. [19]

      Kwon, O. S.; Song, H. S.; Conde, J.; Kim, H. I.; Artzi, N.; Kim, J. H. ACS Nano 2016, 10, 1512.  doi: 10.1021/acsnano.5b07075

    20. [20]

      Genovese, D.; Bonacchi, S.; Juris, R.; Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Angew. Chem., Int. Ed. 2013, 52, 5965.  doi: 10.1002/anie.201704430

    21. [21]

      Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 69.
       

    22. [22]

      Genovese, D.; Bonacchi, S.; Juris, R.; Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Angew. Chem., Int. Ed. 2013, 52, 5965.  doi: 10.1002/anie.201301155

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    3. [3]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    6. [6]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(24)
  • Abstract views(1769)
  • HTML views(337)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return