Citation: Liu Yucan, Su Miaomiao, Zhang Yan, Duan Jinming, Li Wei. Influence Rule of Organic Solvents Methanol from Sample Preparation on Degradation Rate and Mechanism of Atrazine in UV-based Oxidation Processes[J]. Acta Chimica Sinica, ;2019, 77(1): 72-83. doi: 10.6023/A18090365 shu

Influence Rule of Organic Solvents Methanol from Sample Preparation on Degradation Rate and Mechanism of Atrazine in UV-based Oxidation Processes

  • Corresponding author: Liu Yucan, liuyucanfendou@163.com
  • Received Date: 4 September 2018
    Available Online: 25 January 2018

    Fund Project: Project supported by the Natural Science Foundation of Shandong Province (No. ZR2017BEE016), the National Natural Science Foundation of China (No. 51308437) and the Science Fund of Yantai University (No. TM17B19)the National Natural Science Foundation of China 51308437the Science Fund of Yantai University TM17B19the Natural Science Foundation of Shandong Province ZR2017BEE016

Figures(13)

  • Stock solutions of organic micro-pollutants with low water solubility are commonly prepared using organic solvents in laboratory studies on degradation of these organic compounds. Dilution of the stock solution unavoidably introduces a small amount of organic solvent into the experimental working solutions. This could possibly affect the estimation of the degradation rate constants (kobs) of these organic micro-pollutants by UV-based oxidation processes. To demonstrate this problem, the effect of organic solvents on the degradation rate of atrazine (ATZ) has been investigated in the sole-UV, UV/H2O2 and UV/TiO2 process at the concentration levels that would likely be derived from stock solutions. Organic solvent methanol (MeOH) commonly used for stock-solution preparation was selected. The degradation of ATZ was investigated under ultraviolet irradiation (253.7 nm). The reaction was conducted in an annular photochemical reactor, in the axis of which a low-pressure mercury lamp (LPUV) was installed. The photon flux into the solution from the LPUV was determined to be at 1.18×10-7 Einstein/s. A magnetic stirrer was located at the bottom of the reactor to maintain homogeneity of the reacting solution. A thermostatic water recirculation system was used to control the solution temperature at 20±0.5℃. Prior to irradiation, the mercury lamp was ignited for 30 min for a stable output. UV photo-oxidation was performed with ultrapure water containing an initial 0.1 or 5 mg/L ATZ and different volume ratio of methanol. Solution pH value of 4.0, 7.0 and 10.0 was buffered using phosphate or borate. Determination of ATZ using ultra-performance liquid chromatography-electrospray-triple quadrupole mass spectrometry coupled with an ACQUITYTM UPLC BEH C8 separation column. The results show that the reaction rate of ATZ in UV/TiO2 process could be affected significantly by the presence of MeOH, even at a concentration well below that possibly introduced during the preparation of working solutions from the organic solvent stock solutions (e.g. 0.01%, V/V). With the increase of MeOH concentration, the kobs of ATZ in UV/TiO2 process gradually decreases. The organic solvents having a stronger reaction activity with·OH tend to impose a greater effect on the kobs of ATZ. However, MeOH does not affect kobs of photolysis of ATZ in sole-UV process, and a small effect for the kobs of ATZ in UV/H2O2 process. In addition, MeOH in the reaction system does not affect the speciation and degradation pathway of ATZ under different UV-based oxidation processes. The findings here provide a plausible explanation for the discrepancies in the reaction rate constants reported in the literature for some organic micro-pollutants during the UV-based oxidation processes.
  • 加载中
    1. [1]

      Gibson, D. T. Aquatic Pollutants: Transformation and Biological Effects, Elsevier, 2015.
       

    2. [2]

       

    3. [3]

      Kong, L.; Kadokami, K.; Duong, H. T.; Chau, H. T. C. Chemosphere 2016, 165, 221.  doi: 10.1016/j.chemosphere.2016.08.084

    4. [4]

      Zietzschmann, F.; Altmann, J.; Ruhl, A. S.; Dünnbier, U.; Dommisch, I.; Sperlich, A.; Meinel, F.; Jekel, M. Water Res. 2014, 56, 48.  doi: 10.1016/j.watres.2014.02.044

    5. [5]

      Reddy, P. V. L.; Kim, K.-H. J. Hazard. Mater. 2015, 285, 325.  doi: 10.1016/j.jhazmat.2014.11.036

    6. [6]

      Rozas, O.; Vidal, C.; Baeza, C.; Jardim, W. F.; Rossner, A.; Mansilla, H. D. Water Res. 2016, 98, 109.  doi: 10.1016/j.watres.2016.03.069

    7. [7]

      Sanches, S.; Crespo, M. T. B.; Pereira, V. J. Water Res. 2010, 44, 1809.  doi: 10.1016/j.watres.2009.12.001

    8. [8]

      Choi, H. J.; Kim, D.; Lee, T. J. J. Environ. Sci. Health B 2013, 48, 927.  doi: 10.1080/03601234.2013.816587

    9. [9]

      Rastogi, A.; Al-Abed, S. R.; Dionysiou, D. D. Appl. Catal. B 2009, 85, 171.  doi: 10.1016/j.apcatb.2008.07.010

    10. [10]

      Wang, D.-H.; Zhang, L.; Lou, S.-Z. Acta Chim. Sinica 2017, 75, 22.
       

    11. [11]

      Ruan, L.-H.; Chen, C.-X.; Zhang, X.-X.; Sun, J. Chin. J. Org. Chem. 2018, 38, DOI:10.6023/cjoc201806009 (in Chinese).  doi: 10.6023/cjoc201806009

    12. [12]

      Challis, J. K.; Cuscito, L. D.; Joudan, S.; Luong, K. H.; Knapp, C. W.; Hanson, M. L.; Wong, C. S. Sci. Total Environ. 2018, 635, 803.  doi: 10.1016/j.scitotenv.2018.04.128

    13. [13]

      Yang, Y.; Cao, H.; Peng, P.; Bo, H. J. Hazard. Mater. 2014, 279, 444.  doi: 10.1016/j.jhazmat.2014.07.035

    14. [14]

      Barchanska1, H.; Sajdak, M.; Kornelia, S.; Swientek1, A.; Tworek1, M.; Kurek, M. Environ. Sci. Pollut. Res. 2017, 24, 644.  doi: 10.1007/s11356-016-7798-3

    15. [15]

      Singh, S.; Kumar, V.; Chauhan, A.; Datta, S.; Wani, A. B.; Singh, N.; Singh, J. Environ. Chem. Lett. 2018, 16, 211.  doi: 10.1007/s10311-017-0665-8

    16. [16]

      United States Environmental Protection Agency, National Primary Drinking Water Regulations (Total Coliforms (Including Fecal Coliforms and E. Coli)), 2009, p. 54.

    17. [17]

      Directive 2000/60/EC, Directive W F. EU Water Framework Directive, 2000.

    18. [18]

      State Standard of the People's Republic of China, Standards for Drinking Water Quality GB 5749-2006, 2006.

    19. [19]

      Moreira, A. J.; Borges, A. C.; Gouvea, L. F. C.; Macleod, T. C. O.; Freschi, G. P. G. J. Photoch. Photobio. A 2017, 347, 160.  doi: 10.1016/j.jphotochem.2017.07.022

    20. [20]

      Chen, C.; Yang, S.; Guo, Y.; Sun, C.; Gu, C.; Xu, B. J. Hazard. Mater. 2009, 172, 675.  doi: 10.1016/j.jhazmat.2009.07.050

    21. [21]

      Lekkerkerker-Teunissen, K.; Benotti, M. J.; Snyder, S. A.; Dijk, H. C. V. Sep. Purif. Technol. 2012, 96, 33.  doi: 10.1016/j.seppur.2012.04.018

    22. [22]

      Fang, T.; Hofmanna, R.; Bolton, J. J. Photoch. Photobio. A 2018, 357, 81.  doi: 10.1016/j.jphotochem.2018.02.025

    23. [23]

      Abramović, B. F.; Banić, N. D.; Šojić, D. V. Chemosphere 2010, 81, 114.  doi: 10.1016/j.chemosphere.2010.07.016

    24. [24]

      Vione, D.; Falletti, G.; Maurino, V.; Minero, C.; Pelizzetti, E.; Malandrino, M., Ajassa, R.; Olariu, R.-I.; Arsene, C. Environ. Sci. Technol. 2006, 40, 3775.  doi: 10.1021/es052206b

    25. [25]

      Zhou, H.; Lian, L.; Yan, S.; Song, W. Water Res. 2017, 112, 120.  doi: 10.1016/j.watres.2017.01.048

    26. [26]

      Khan, J. A.; He, X.; Shah, N. S.; Khan, H. M.; Hapeshi, E.; Fatta-Kassinos, D.; Dionysiou, D. D. Chem. Eng. J. 2014, 252, 393.  doi: 10.1016/j.cej.2014.04.104

    27. [27]

      Yola, M. L.; Eren, T.; Atar, N. Chem. Eng. J. 2014, 250, 288.  doi: 10.1016/j.cej.2014.03.116

    28. [28]

      Naeem, K.; Ouyang, F. J. Environ. Sci.-China 2013, 25, 399.  doi: 10.1016/S1001-0742(12)60055-2

    29. [29]

      Li, W.; Wu, R.; Duan, J.; Saint, C. P.; Mulcahy, D. Chem. Eng. J. 2016, 313, 801.
       

    30. [30]

      Khan, J. A.; He, X.; Khan, H. M.; Shah, N. S.; Dionysiou, D. D. Chem. Eng. J. 2013, 218, 376.  doi: 10.1016/j.cej.2012.12.055

    31. [31]

      United States Environmental Protection Agency, Determination of Triazine Pesticides and Their Degradates in Drinking Water by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS), Method 536, 2007.

    32. [32]

      Khan, J. A.; He, X.; Shah, N. S.; Sayed, M.; Khan, H. M.; Dionysiou, D. D. Chem. Eng. J. 2017, 325, 485.  doi: 10.1016/j.cej.2017.05.011

    33. [33]

      Meng, C.; Wang, H.; Wu, Y.-B.; Fu, X.-Z.; Yuan, R.-S. Acta Chim. Sinica 2017, 75, 508 (in Chinese).
       

    34. [34]

      Du, P.-J.; Su, T.-M.; Luo, X.; Zhou, X.-T.; Qin, Z.-Z.; Ji, H.-B.; Chen, J.-H. Chinese J. Chem. 2018, 36, 538.  doi: 10.1002/cjoc.v36.6

    35. [35]

      Zhang, X.-W.; Li, P.-F.; Yuan, Y.; Jia, X.-D. Chin. J. Org. Chem. 2014, 38, 2435 (in Chinese).

    36. [36]

      Cui, S.-Z.; Yang, H.-P.; Sun, H.-H.; Nie, K.; Wu, J.-M. Acta Chim. Sinica 2016, 74, 995 (in Chinese).
       

    37. [37]

      Hu, E.; Cheng, H. Water Res. 2014, 57, 8.  doi: 10.1016/j.watres.2014.03.015

    38. [38]

      Liu, Y.-C.; Duan, J.-M.; Li, W. Acta Chim. Sinica 2015, 73, 1196 (in Chinese).
       

    39. [39]

      Li, X.; Ma, J.; Liu, G.; Fang, J.; Yue, S.; Guan, Y.; Chen, L.; Liu, X. Environ. Sci. Technol. 2012, 46, 7342.  doi: 10.1021/es3008535

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    4. [4]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    5. [5]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    6. [6]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    7. [7]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    8. [8]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    9. [9]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Lijun Zhou Dongmei Wang Jiameng Wang Tongjie Yao Mei Qi Yin Kong Yan Song . Teaching Case Design of “Degradation and Aging” as an Ideological and Political Demonstration Course. University Chemistry, 2025, 40(4): 80-86. doi: 10.12461/PKU.DXHX202405113

    18. [18]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    19. [19]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

    20. [20]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

Metrics
  • PDF Downloads(16)
  • Abstract views(1962)
  • HTML views(236)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return