Citation: Yang Ying, Chen Tian, Pan Dequn, Zhang Zheng, Guo Xueyi. Research Progress of Bifacial Solar Cells with Transparent Counter Electrode[J]. Acta Chimica Sinica, ;2018, 76(9): 681-690. doi: 10.6023/A18050197 shu

Research Progress of Bifacial Solar Cells with Transparent Counter Electrode

  • Corresponding author: Guo Xueyi, xyguo@csu.edu.cn
  • Received Date: 12 May 2018
    Available Online: 29 September 2018

    Fund Project: the National Natural Science Foundation of China 61774169Third Innovation Driven Project of Central South University 2016CX022Undergraduate student of Central South University cx20170271Graduate student of Central South University 1053320170565Graduate student of Central South University 1053320170116Undergraduate student of Central South University 201710533300Scientific Research Foundation for the Returned overseas Chinese Scholar, Natural Science Foundation of Hunan Province 2016JJ3140Project supported by the National Natural Science Foundation of China (No. 61774169), Third Innovation Driven Project of Central South University (No. 2016CX022), Scientific Research Foundation for the Returned overseas Chinese Scholar, Natural Science Foundation of Hunan Province (No. 2016JJ3140), Graduate student of Central South University (Nos. 1053320170116, 1053320170565) and Undergraduate student of Central South University (Nos. cx20170271, 201710533300)

Figures(9)

  • In recent years, solar cells (including dye-sensitized solar cells (DSSCs), quantum dots sensitized solar cells (QDSCs), and perovskite solar cells (PSCs)) have attracted wide attention due to their low cost, light weight, and high efficiency. Compared with traditional solar cells with opaque counter electrodes where the sunlight can only pass from the photoanode, bifacial solar cells, which are composed of photoanode, electrolyte, transparent counter electrode, hole transport layer can realize the purpose that sunlight can pass through the photoanode and the transparent counter electrode (CE) at the same time, which can reduce the loss of sunlight and greatly broad the light utilization of device to achieve improved opto-electronic performance. In the entire electrochemical cycle, the transparent counter electrode is regarded as reducing agent in reducing the oxidation state I3- in the electrolyte to the reduced state I- so the electrocatalytic activity, chemical stability, electrical conductivity of the transparent counter electrode directly influences the rear side photo-to-electricity efficiency of device and the preparation of transparent counter electrodes is significantly important for the device. Therefore, it is necessary to study the effect of the counter electrode on the photoelectric conversion efficiency of the bifacial solar cells. In view of the problems of low transmittance, high cost, and low light utilization of traditional CE, the transparent CE of bifacial solar cells with high power conversion efficiency and low cost are preferred. The transparent CE of bifacial DSSCs, QDSCs and PSCs are comprehensively discussed in this paper. The influence of materials choosing and interfacial modification methods of transparent counter electrode on the photovoltaic performances of bifacial devices are analyzed. The transparent counter electrodes materials mainly include metals and alloys, sulfides, selenides, conductive polymers, and so on. In conclusion, bifacial solar cells mainly have the following problems:high reflectivity of metal electrodes, corrosion of the sulfide on the electrodes and the stability of the conductive polymers. The further application prospects of these kinds of bifacial solar cells is proposed.
  • 加载中
    1. [1]

      Lu, Y.; Ding, Y. F.; Wang, J. Y.; Pei, J. Chin. J. Org. Chem. 2016, 36, 2272(in Chinese).
       

    2. [2]

      Chen, H. J. Chin. J. Org. Chem. 2016, 36, 460(in Chinese).
       

    3. [3]

      Kong, L. J.; Zhou, X. Y.; Fan, S. Y.; Li, Z. J.; Gu, Z. G. Acta Chim. Sinica 2016, 74, 620(in Chinese).
       

    4. [4]

      Gao, S. M.; Hu, Y. H.; Duan, Z. M.; Gao, X. K. Chin. J. Chem. 2016, 34, 689.  doi: 10.1002/cjoc.v34.7

    5. [5]

      Poudel, P.; Thapa, A.; Elbohy, H.; Qiao, Q. Nano Energy 2014, 5, 116.  doi: 10.1016/j.nanoen.2014.02.003

    6. [6]

      Ju, M. J.; Jeon, I. Y.; Lim, K.; Kim, J. C.; Choi, H. J.; Choi, I. T.; Yu, K. E.; Kwon, Y. J.; Ko, J.; Lee, J. J. Energy Environ. Sci. 2014, 7, 1044.  doi: 10.1039/C3EE43732A

    7. [7]

      Lee, C. P.; Lin, C. A.; Wei, T. C.; Tsai, M. L.; Meng, Y.; Li, C. T.; Ho, K. C.; Wu, C. I.; Lau, S. P.; He, J. H. Nano Energy 2015, 18, 109.  doi: 10.1016/j.nanoen.2015.10.008

    8. [8]

      Ito, S.; Zakeeruddin, S. M.; Comte, P.; Liska, P.; Kuang, D.; Graetzel, M. Nat. Photonics 2008, 2, 693.  doi: 10.1038/nphoton.2008.224

    9. [9]

      Park, C. Y.; Lee, J. H.; Choi, B. H. Org. Electron. 2013, 14, 3172.  doi: 10.1016/j.orgel.2013.09.010

    10. [10]

      Shin, Y. H.; Kang, S. B.; Lee, S.; Kim, J. J.; Kim, H. K. Org. Electron. 2013, 14, 926.  doi: 10.1016/j.orgel.2012.12.036

    11. [11]

      Won, J. Y.; Han, Y. H.; Seol, H. J.; Lee, K. J.; Choi, R.; Jeong, J. K. Thin Solid Films 2016, 603, 268.  doi: 10.1016/j.tsf.2016.02.032

    12. [12]

      Yan, L. T.; Rath, J. K.; Schropp, R. E. I. Appl. Surf. Sci. 2011, 257, 9461.  doi: 10.1016/j.apsusc.2011.06.035

    13. [13]

      Morgenstern, F. S. F.; Kabra, D.; Massip, S.; Brenner, T. J. K.; Lyons, P. E.; Coleman, J.; Friend, R. H. Appl. Phys. Lett. 2011, 99, 242.
       

    14. [14]

      De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. ACS Nano 2009, 3, 1767.  doi: 10.1021/nn900348c

    15. [15]

      Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Science 2004, 305, 1273.  doi: 10.1126/science.1101243

    16. [16]

      Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L.-B.; Gruner, G. Appl. Phys. Lett. 2006, 88, 233506.  doi: 10.1063/1.2209887

    17. [17]

      Barnes, T. M.; Bergeson, J. D.; Tenent, R. C.; Larsen, B. A.; Teeter, G.; Jones, K. M.; Blackburn, J. L.; van de Lagemaat, J. Appl. Phys. Lett. 2010, 96, 243309.  doi: 10.1063/1.3453445

    18. [18]

      Na, S. I.; Kim, S. S.; Jo, J.; Kim, D. Y. Adv. Mater. 2008, 20, 4061.  doi: 10.1002/adma.v20:21

    19. [19]

      Ouyang, J.; Xu, Q. F.; Chu, C. W.; Yang, Y.; Li, G.; Shinar, J. Polymer 2004, 45, 8443.  doi: 10.1016/j.polymer.2004.10.001

    20. [20]

      Zhu, H. Y.; Huang, W.; Huang, Y L.; Wang, W. Z. Acta Chim. Sinica 2016, 74, 429(in Chinese).  doi: 10.3866/PKU.WHXB201511201
       

    21. [21]

      Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Nat. Nanotechnol. 2010, 5, 574.  doi: 10.1038/nnano.2010.132

    22. [22]

      Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photonics 2010, 4, 611.  doi: 10.1038/nphoton.2010.186

    23. [23]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.  doi: 10.1038/nmat1849

    24. [24]

      Chen, P. Y.; Li, C. T.; Lee, C. P.; Vittal, R.; Ho, K. C. Nano Energy 2015, 12, 374.  doi: 10.1016/j.nanoen.2015.01.010

    25. [25]

      Lee, Y. L.; Chen, C. L.; Chong, L. W.; Chen, C. H.; Liu, Y. F.; Chi, C. F. Electrochem. Commun. 2010, 12, 1662.  doi: 10.1016/j.elecom.2010.09.022

    26. [26]

      Tai, Q.; Chen, B.; Guo, F.; Xu, S.; Hu, H.; Sebo, B.; Zhao, X.-Z. ACS Nano 2011, 5, 3795.  doi: 10.1021/nn200133g

    27. [27]

      Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.; Lin, Z.-H.; Guo, X.-Y. Nano Energy 2016, 26, 123.  doi: 10.1016/j.nanoen.2016.05.010

    28. [28]

      Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H.-H.; Sun, Z.-B.; Wang, J. H.; Zhou, C. H.; Wang, Y. W.; Guo, X. Y.; Chen, P. K.; Yu, X. F. Adv. Mater. 2016, 28, 8937.  doi: 10.1002/adma.v28.40

    29. [29]

      Achari, M. B.; Elumalai, V.; Vlachopoulos, N.; Safdari, M.; Gao, J.; Gardner, J. M.; Kloo, L. PCCP 2013, 15, 17419.  doi: 10.1039/c3cp52869c

    30. [30]

      Wang, X.; Kulkarni, S. A.; Ito, B. I.; Batabyal, S. K.; Nonomura, K.; Wong, C. C.; Grätzel, M.; Mhaisalkar, S. G.; Uchida, S. ACS Appl. Mater. Interfaces 2013, 5, 444.  doi: 10.1021/am3025454

    31. [31]

      O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  doi: 10.1038/353737a0

    32. [32]

      Huang, J.-R.; Tan, X.; Yu, T.; Zhao, L.; Wu, T.-Y. Mater. Rev. 2011, 25, 134(in Chinese).
       

    33. [33]

      Yang, Y.; Zhang, Z; Gao, J.; Lin, Z H; Yan, J Y; Guo, X Y. J. Inorg. Mater. 2017, 32, 25(in Chinese).
       

    34. [34]

      Li, J.; Sun, M. X.; Zhang, X. Y.; Cui, X. L. Acta Phys.-Chim. Sin. 2011, 27, 2255(in Chinese).  doi: 10.3866/PKU.WHXB20110901

    35. [35]

      Lee, K. M.; Lin, L. C.; Chen, C. Y. Electrochim. Acta 2014, 135, 578.  doi: 10.1016/j.electacta.2014.05.004

    36. [36]

      Zhang, H. H.; Tang, Q. W.; He, B. L. RSC Adv. 2015, 5, 51600.  doi: 10.1039/C5RA04735H

    37. [37]

      Cheng, C. E.; Lin, Z. K.; Lin, Y. C.; Lei, B. C.; Chang, C. S.; Chien, F. S.-S. Jpn. J. Appl. Phys. 2017, 56, 012301.  doi: 10.7567/JJAP.56.012301

    38. [38]

      Bahramian, A.; Vashaee, D. Sol. Energy Mater. Sol. Cells 2015, 143, 284.  doi: 10.1016/j.solmat.2015.07.011

    39. [39]

      Wu, J. H.; Li, Y.; Tang, Q. W.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Meng, L. J. Sci. Rep. 2014, 4, 4028.
       

    40. [40]

      He, B. L.; Zhang, X.; Zhang, H. N.; Li, J. Y.; Meng, Q.; Tang, Q. W. Sol. Energy. 2017, 147, 470.  doi: 10.1016/j.solener.2017.03.059

    41. [41]

      Rong, Y. G.; Ku, Z. L.; Li, X.; Han, H. W. J. Mater. Sci. 2015, 50, 3803.  doi: 10.1007/s10853-015-8945-9

    42. [42]

      Li, H. G.; Xiao, Y. M.; Han, G. Y. J. Power Sources 2017, 342, 709.  doi: 10.1016/j.jpowsour.2017.01.007

    43. [43]

      Xu, S. J.; Luo, Y. F.; Liu, G. W.; Qiao, G. J.; Zhong, W.; Xiao, Z. H.; Luo, Y. P.; Ou, H. Electrochim. Acta 2015, 156, 20.  doi: 10.1016/j.electacta.2014.12.174

    44. [44]

      Song, D. D.; Li, M. C.; Li, Y. F.; Zhao, X.; Jiang, B.; Jiang, Y. J. ACS Appl. Mater. Interfaces 2014, 6, 7126.  doi: 10.1021/am500082x

    45. [45]

      Han, J.; Kim, H.; Kim, D. Y.; Jo, S. M.; Jang, S.-Y. ACS Nano 2010, 4, 3503.  doi: 10.1021/nn100574g

    46. [46]

      Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A. ACS Nano 2010, 4, 6203.  doi: 10.1021/nn1016428

    47. [47]

      Duan, Y. Y.; Tang, Q. W.; Liu, J.; He, B. L.; Yu, L. M. Angew. Chem.-Int. Ed. 2014, 53, 14569.  doi: 10.1002/anie.201409422

    48. [48]

      Duan, Y. Y.; Tang, Q. W.; He, B. L.; Li, R.; Yu, L. M. Nanoscale 2014, 6, 12601.  doi: 10.1039/C4NR03900A

    49. [49]

      Liu, J.; Tang, Q. W.; He, B. L.; Yu, M. L. J. Power Sources 2015, 282, 79.  doi: 10.1016/j.jpowsour.2015.02.045

    50. [50]

      Yang, P. Z.; Zhao, Z. Y.; Zhu, L.; Tang, Q. W. J. Alloys Compd. 2015, 648, 930.  doi: 10.1016/j.jallcom.2015.07.082

    51. [51]

      Murakami, T. N.; Kay, A.; Ito, S.; Wang, Q.; Nazeeruddin, M. K.; Bessho, T.; Liska, P.; Baker, R. H.; Comte, P.; Pechy, P. J. Electrochem. Soc. 2006, 153, A2255.  doi: 10.1149/1.2358087

    52. [52]

      Chen, J. K.; Li, K. X; Luo, Y. H.; Guo, X. Z.; Li, D. M.; Deng, M. H.; Huang, S. Q.; Meng, Q. B. Carbon 2009, 47, 2704.  doi: 10.1016/j.carbon.2009.05.028

    53. [53]

      Meng, X. L.; Li, H. Y.; Wang, J. S. Chem. J. Chin. Univ. 2012, 33, 1021(in Chinese).  doi: 10.3969/j.issn.0251-0790.2012.05.028

    54. [54]

      Ma, C.; Dong, W.; Fang, L.; Zheng, F. G.; Shen, M. R.; Wang, Z. L. Thin Solid Films 2012, 520, 5727.  doi: 10.1016/j.tsf.2012.04.011

    55. [55]

      Lan, Z.; Wu, J. H.; Lin, J. M.; Huang, M. L.; Wang, X. X. Thin Solid Films 2012, 522, 425.  doi: 10.1016/j.tsf.2012.08.017

    56. [56]

      Li, X.; Gan, W.-P.; Zhang, W.-C.; Li, L.-L.; Huang, X.-Q. Acta, Materiae Compositae Sinica 2012, 29, 1(in Chinese).
       

    57. [57]

      Zhang, K.-Q.; Zhang, X.-L. New Chem. Mater. 2010, 38, 27(in Chinese).
       

    58. [58]

      Guo, X. Y.; Gao, J.; Zhang, Z.; Xiao, S.; Pan, D. Q.; Zhou, C.; Shen, J.; Hong, J.; Yang, Y. Mater. Today Energy 2017, 5, 320.  doi: 10.1016/j.mtener.2017.07.013

    59. [59]

      Ross, R. T.; Nozik, A. J. J. Appl. Phys. 1982, 53, 3813.  doi: 10.1063/1.331124

    60. [60]

      Karki, I. B.; Nakarmi, J. J.; Mandal, P. K.; Chatterjee, S. Nepal J. Sci. Tech. 2013, 13, 179.

    61. [61]

      Kushwaha, S.; Bahadur, L. J. Lumin. 2015, 161, 426.  doi: 10.1016/j.jlumin.2015.01.054

    62. [62]

      Gorer, S.; Hodes, G. J. Phys. Chem. 1994, 98, 5338.  doi: 10.1021/j100071a026

    63. [63]

      Jiao, S.; Du, J.; Du, Z. L.; Long, D. H.; Jiang, W. Y.; Pan, Z. X.; Li, Y.; Zhong, X. H. J. Phys. Chem. Lett. 2017, 8, 559.  doi: 10.1021/acs.jpclett.6b02864

    64. [64]

      Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-I.; Hanaya, M. Chem. Commun. 2015, 51, 15894.  doi: 10.1039/C5CC06759F

    65. [65]

      Dao, V.-D.; Choi, Y.; Yong, K.; Larina, L. L.; Shevaleevskiy, O.; Choi, H. S. J. Power Sources 2015, 274, 831.  doi: 10.1016/j.jpowsour.2014.10.095

    66. [66]

      Seol, M.; Kim, H.; Tak, Y.; Yong, K. Chem. Commun. 2010, 46, 5521.  doi: 10.1039/c0cc00542h

    67. [67]

      Ma, C. Q.; Tang, Q. W.; Zhao, Z. Y.; Hou, M. J.; Chen, Y. R.; He, B. L.; Yu, L. M. J. Power Sources 2015, 278, 183.  doi: 10.1016/j.jpowsour.2014.12.069

    68. [68]

      Liu, L. L.; Wang, Q.; Gao, C. J.; Chen, H.; Liu, W. S.; Tang, Y. J. Phys. Chem. C 2014, 118, 14511.  doi: 10.1021/jp502281m

    69. [69]

      Tu, Y. G.; Wu, J. H.; Lan, Z.; Lin, Y. B.; Liu, Q.; Lin, B. C.; Liu, G. Z. J. Mater. Sci.-Mater. Electron. 2014, 25, 3016.  doi: 10.1007/s10854-014-1976-1

    70. [70]

      Ke, W. J.; Fang, G. J.; Lei, H. W.; Qin, P. L.; Tao, H.; Zeng, W.; Wang, J.; Zhao, X. Z. J. Power Sources 2014, 248, 809.  doi: 10.1016/j.jpowsour.2013.10.028

    71. [71]

      De Rossi, F.; Di Gaspare, L.; Reale, A.; Di Carlo, A.; Brown, T. M. J. Mater. Chem. A 2013, 1, 12941.  doi: 10.1039/c3ta13076b

    72. [72]

      Geng, H. F.; Zhu, L. Q.; Li, W. P.; Liu, H. C.; Su, X. W.; Xi, F. X.; Chang, X. W. Electrochim. Acta 2015, 182, 1093.  doi: 10.1016/j.electacta.2015.10.033

    73. [73]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    74. [74]

      Jiang, Q.; Chu, Z. N.; Wang, P. Y.; Yang, X. L.; Liu, H.; Wang, Y.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Adv. Mater. 2017, 29, 1703852.  doi: 10.1002/adma.v29.46

    75. [75]

      Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T.; Peters, I. M.; Minichetti, M. C.; Rolston, N.; Prasanna, R.; Sofia, S.; Harwood, D.; Ma, W.; Moghadam, F.; Snaith, H. J.; Buonassisi, T.; Holman, Z. C.; Bent, S. F.; McGehee, M. D. Nat. Energy 2017, 2, 17009.  doi: 10.1038/nenergy.2017.9

    76. [76]

      Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Science 2017, 356, 1376.  doi: 10.1126/science.aan2301

    77. [77]

      Yang, Y.; Gao, J.; Cui, J. R.; Guo, X. Y. J. Inorg. Mater. 2015, 30, 1131(in Chinese).
       

    78. [78]

      Zhu, S. J.; Yao, X.; Ren, Q. S.; Zheng, C. C.; Li, S. Z.; Tong, Y. Z.; Shi, B.; Guo, S.; Fan, L.; Ren, H. Z.; Wei, C. C.; Li, B. Z.; Ding, Y.; Huang, Q.; Li, Y. L.; Zhao, Y.; Zhang, X. D. Nano Energy 2017, 45, 280.

    79. [79]

      Fan, L.; Li, Y. L.; Yao, X.; Ding, Y.; Zhao, S. Z.; Shi, B.; Wei, C. C.; Zhang, D. K.; Li, B. Z.; Wang, G. C.; Zhao, Y.; Zhang, X. D. ACS Appl. Energy Mater. 2018, 1, 1575.  doi: 10.1021/acsaem.8b00001

    80. [80]

      Kim, G. M.; Tatsuma, T. Sci. Rep. 2017, 7, 10699.  doi: 10.1038/s41598-017-11193-1

    81. [81]

      Guo, F.; Azimi, H.; Hou, Y.; Przybilla, T.; Hu, M. Y.; Bronnbauer, C.; Langner, S.; Spiecker, E.; Forberich, K.; Brabec, C. J. Nanoscale 2015, 7, 1642.  doi: 10.1039/C4NR06033D

    82. [82]

      Lee, M.; Ko, Y.; Jun, Y. J. Mater. Chem. A 2015, 3, 19310.  doi: 10.1039/C5TA02779A

    83. [83]

      Yang, K.Y.; Li, F. S.; Zhang, J. H.; Veeramalai, C. P.; Guo, T. L. Nanotechnology 2016, 27, 095202.  doi: 10.1088/0957-4484/27/9/095202

    84. [84]

      Pang, S. Z.; Chen, D. Z.; Zhang, C. F.; Chang, J. J.; Lin, Z. H.; Yang, H. F.; Sun, X.; Mo, J. J.; Xi, H.; Han, G. Q.; Zhang, J. C.; Han, Y. Sol. Energy Mater. Sol. Cells 2017, 170, 278.  doi: 10.1016/j.solmat.2017.05.071

    85. [85]

      Fan, X.; Wang, J. Z.; Wang, H. B.; Liu, X.; Wang, H. ACS Appl. Mater. Interfaces 2015, 7, 16287.  doi: 10.1021/acsami.5b02830

    86. [86]

      Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y.-R.; Kim, B.-J.; Lee, K. Adv. Mater. 2014, 26, 2268.  doi: 10.1002/adma.v26.14

    87. [87]

      Xiao, Y. M.; Han, G. Y.; Wu, J. H.; Lin, J.-Y. J. Power Sources 2016, 306, 171.  doi: 10.1016/j.jpowsour.2015.12.003

    88. [88]

      Xiao, Y. M.; Han, G. Y.; Zhou, H. H.; Wu, J. H. RSC Adv. 2016, 6, 2778.  doi: 10.1039/C5RA23430A

    89. [89]

      Sun, K.; Li, P. C.; Xia, Y. J.; Chang, J. J.; Ouyang, J. Y. ACS Appl. Mater. Interfaces 2015, 7, 15314.  doi: 10.1021/acsami.5b03171

    90. [90]

      Liu, Z. K.; You, P.; Xie, C.; Tang, G. Q.; Yan, F. Nano Energy 2016, 28, 151.  doi: 10.1016/j.nanoen.2016.08.038

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    7. [7]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    8. [8]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    9. [9]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    11. [11]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    12. [12]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    13. [13]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    15. [15]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    16. [16]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    18. [18]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

Metrics
  • PDF Downloads(8)
  • Abstract views(2044)
  • HTML views(327)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return