Citation: Li Cui, Zhang Qi, Fu Yao. Transition Metal Catalyzed Deoxydehydration of Alcohols[J]. Acta Chimica Sinica, ;2018, 76(7): 501-514. doi: 10.6023/A18040138 shu

Transition Metal Catalyzed Deoxydehydration of Alcohols

  • Corresponding author: Fu Yao, fuyao@ustc.edu.cn
  • Received Date: 9 April 2018
    Available Online: 14 July 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21325208, 21572212, 21732006, 21702041), Ministry of Science and Technology of China (No. 2017YFA0303500), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), Fundamental Research Funds for the Central Universities, and Program for Changjiang Scholars and Innovative Research Team in Universitythe National Natural Science Foundation of China 21572212the National Natural Science Foundation of China 21325208the National Natural Science Foundation of China 21702041the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21732006Ministry of Science and Technology of China 2017YFA0303500

Figures(41)

  • In view of the depletion of fossil fuels, the development and utilization of environment-friendly and sustainable resources widely play an indispensable role in alleviating and resolving problems about resources and environment. Biomass could be utilized as biofuels and renewable platform chemicals. However, biomass-derived molecules are fairly oxygen-rich and hyperfunctionalized. Therefore, new synthetic routes for the regenerative production of chemicals, fuels, and energy from renewable biomass sources are currently investigated especially the routes of transforming high-oxygen-content biomassderived vicinal diols and poly vicinal alcohols into fuels and value-added chemicals. A range of reductive deoxygenation methods consisting of direct deoxygenation, pyrolysis, hydrogenolysis, decarbonylation, decarboxylation, hydrodeoxygenation, and deoxydehydration (DODH) are under investigation. In this review, we detail the recent-evolutionary and efficient strategies of transition metal-catalyzed DODH of vicinal diols into corresponding alkenes, including rhenium, molybdenum, vanadium, and ruthenium catalysts. Rhenium-catalyzed DODH reactions are very selective and active to provide high yields of olefin products, which keep important functionality in place as well as can be readily functionalized. Recent efforts in rhenium-mediated systems include the development of new rhenium catalysts, the application of cheaper and more available reductants, and growing mechanistic understandings owing to both theoretical and experimental studies. A new emerging trend within DODH is the development of heterogeneous rhenium-based catalysts which demonstrates their ability to rival and in some cases surpass their homogeneous counterparts. Furthermore, catalysts based on the transition metals molybdenum, vanadium and ruthenium show great potential as inexpensive alternatives to rhenium catalysts.
  • 加载中
    1. [1]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294.  doi: 10.1038/nature11475

    2. [2]

      Bruijnincx, P. C. A.; Weckhuysen, B. M. Angew. Chem. Int. Ed. 2013, 52, 11980.  doi: 10.1002/anie.201305058

    3. [3]

      Song, F.; Ding, Y.; Zhao, C. Acta Chim. Sinica 2014, 72, 133(in Chinese).
       

    4. [4]

      Mohr, S. H.; Wang, J.; Ellem, G.; Ward, J.; Giurco, D. Fuel 2015, 141, 120.  doi: 10.1016/j.fuel.2014.10.030

    5. [5]

      Sheldon, R. A. Green Chem. 2017, 19, 18.  doi: 10.1039/C6GC02157C

    6. [6]

      Zhao, C.; Ma, Y.; Wang, Y.; Zhou, X.; Li, H.; Li, M.; Song, Y. Acta Chim. Sinica 2018, 76, 9(in Chinese).
       

    7. [7]

      Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.  doi: 10.1021/cr050989d

    8. [8]

      Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Green Chem. 2010, 12, 1493.  doi: 10.1039/c004654j

    9. [9]

      Besson, M.; Gallezot, P.; Pinel, C. Chem. Rev. 2014, 114, 1827.  doi: 10.1021/cr4002269

    10. [10]

      Wang, Y.; Hu, M.; Wang, Y.; Qin, Y.; Chen, H.; Zeng, L.; Lei, J.; Huang, X.; He, L.; Zhang, R.; Wu, Z. Acta Chim. Sinica 2016, 74, 356(in Chinese).
       

    11. [11]

      Ding, S.; Ge, Q.; Zhu, X. Acta Chim. Sinica 2017, 75, 439(in Chinese).
       

    12. [12]

      Wang, H.; Zhao, Y.; Wang, C.; Fu, Y.; Guo, Q. Acta Chim. Sinica 2009, 67, 893(in Chinese).
       

    13. [13]

      Jiang, Y.; Yu, H.; Fu, Y. Acta Chim. Sinica 2013, 71, 1611(in Chinese).
       

    14. [14]

      Lian, Y.; Yan, L.; Wang, Y.; Qi, X. Acta Chim. Sinica 2014, 72, 502(in Chinese).
       

    15. [15]

      Zhang, X.; Wilson, K.; Lee, A. F. Chem. Rev. 2016, 116, 12328.  doi: 10.1021/acs.chemrev.6b00311

    16. [16]

      Liu, X.; Yan, L.; Fu, Y. Acta Chim. Sinica 2017, 75, 788(in Chinese).
       

    17. [17]

      Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. Angew. Chem. Int. Ed. 2007, 46, 4434.  doi: 10.1002/(ISSN)1521-3773

    18. [18]

      Vennestrøm, P. N. R.; Osmundsen, C. M.; Christensen, C. H.; Taarning, E. Angew. Chem. Int. Ed. 2011, 50, 10502.  doi: 10.1002/anie.201102117

    19. [19]

      Serrano-Ruiz, J. C.; Luque, R.; Sepúlveda-Escribano, A. Chem. Soc. Rev. 2011, 40, 5266.  doi: 10.1039/c1cs15131b

    20. [20]

      Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538.  doi: 10.1039/C1CS15147A

    21. [21]

      Sullivan, R. J.; Latifi, E.; Chung, B. K.-M.; Soldatov, D. V.; Schlaf, M. Chem. Rev. 2014, 114, 1827.  doi: 10.1021/cr4002269

    22. [22]

      Yan, L.; Pang, H.; Huang, Y.; Fu, Y. Acta Chim. Sinica 2014, 72, 1005(in Chinese).
       

    23. [23]

      Li, J.; Huang, Y.; Guo, Q.; Fu, Y. Acta Chim. Sinica 2014, 72, 1223(in Chinese).
       

    24. [24]

      Zhao, Y.; Deng, L.; Liao, B.; Fu, Y.; Guo, Q. Energy Fuels 2010, 24, 5735.  doi: 10.1021/ef100896q

    25. [25]

      Zhao, Y.; Fu, Y.; Guo, Q. Bioresour. Technol. 2012, 114, 740.  doi: 10.1016/j.biortech.2012.03.057

    26. [26]

      Zhao, Y.; Pan, T.; Zuo, Y.; Guo, Q.; Fu, Y. Bioresour. Technol. 2013, 147, 37.  doi: 10.1016/j.biortech.2013.07.068

    27. [27]

      Xu, L.; Zhang, Y.; Fu, Y. Energy Technol. 2016, 4, 1.  doi: 10.1002/ente.201500354

    28. [28]

      Lai, D.; Deng, L.; Guo, Q.; Fu, Y. Energy Environ. Sci. 2011, 4, 3552.  doi: 10.1039/c1ee01526e

    29. [29]

      Zuo, Y.; Zhang, Y.; Fu, Y. ChemCatChem 2014, 6, 753.  doi: 10.1002/cctc.201300956

    30. [30]

      Ruppert, A. M.; Weinberg, K.; Palkovits, R. Angew. Chem. Int. Ed. 2012, 51, 2564.  doi: 10.1002/anie.201105125

    31. [31]

      Maetani, S.; Fukuyama, T.; Suzuki, N.; Ishihara, D.; Ryu, I. Chem. Commun. 2012, 48, 2552.  doi: 10.1039/c2cc18093f

    32. [32]

      Huang, Y.; Yang, Z.; Chen, M.; Dai, J.; Guo, Q.; Fu, Y. ChemSusChem 2013, 6, 1348.  doi: 10.1002/cssc.201300190

    33. [33]

      Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B. C.; Rahimpou, M. R. Energy Environ. Sci. 2014, 7, 103.  doi: 10.1039/C3EE43081B

    34. [34]

      Chen, M.; Huang, Y.; Pang, H.; Liu, X.; Fu, Y. Green Chem. 2015, 17, 1710.  doi: 10.1039/C4GC01992J

    35. [35]

      Xu, G.; Guo, J.; Qu, Y.; Zhang, Y.; Fu, Y.; Guo, Q. Green Chem. 2016, 18, 5510.  doi: 10.1039/C6GC01097K

    36. [36]

      Li, J.; Liu, J.; Liu, H.; Xu, G.; Zhang, J.; Liu, J.; Zhou, G.; Li, Q.; Xu, Z.; Fu, Y. ChemSusChem 2017, 10, 1436.  doi: 10.1002/cssc.v10.7

    37. [37]

      Liu, X.; Jia, W.; Xu, G.; Zhang, Y.; Fu, Y. ACS Sustainable Chem. Eng. 2017, 5, 8594.  doi: 10.1021/acssuschemeng.7b01047

    38. [38]

      Korstanje, T. J.; Klein Gebbink, R. J. M. Top. Organomet. Chem. 2012, 39, 129.  doi: 10.1007/978-3-642-28288-1

    39. [39]

      Dutta, S. ChemSusChem 2012, 5, 2125.  doi: 10.1002/cssc.v5.11

    40. [40]

      Metzger, J. O. ChemCatChem 2013, 5, 680.  doi: 10.1002/cctc.201200796

    41. [41]

      Boucher-Jacobs, C.; Nicholas, K. M. Top. Curr. Chem. 2014, 353, 163.  doi: 10.1007/978-3-319-08654-5

    42. [42]

      Mika, L. T.; Cséfalvay, E.; Horváth, I. T. Catal. Today 2015, 247, 33.  doi: 10.1016/j.cattod.2014.10.043

    43. [43]

      Harms, R. G.; Herrmann, W. A.; Kühn, F. E. Coord. Chem. Rev. 2015, 296, 1.  doi: 10.1016/j.ccr.2015.03.015

    44. [44]

      Nicholas, K. M. J. Org. Chem. 2015, 80, 6943.  doi: 10.1021/acs.joc.5b00982

    45. [45]

      Makshina, E. V.; Dusselier, M.; Janssens, W.; Jan Degreve, J.; Jacobs, P. A.; Sels, B. F. Chem. Soc. Rev. 2014, 43, 7917.  doi: 10.1039/C4CS00105B

    46. [46]

      Raju, S.; Moret, M. E.; Klein Gebbink, R. J. M. ACS Catal. 2015, 5, 281.  doi: 10.1021/cs501511x

    47. [47]

      Mao, G. L.; Jia, B.; Wang, C. Y. Chin. J. Org. Chem. 2015, 35, 284(in Chinese).
       

    48. [48]

      Dethlefsen, J. R.; Fristrup, P. ChemSusChem 2015, 8, 767.  doi: 10.1002/cssc.v8.5

    49. [49]

      Petersen, A. R.; Fristrup, P. Chem.-Eur. J. 2017, 23, 10235.  doi: 10.1002/chem.v23.43

    50. [50]

      Romao, C. C.; Kuhn, F. E.; Herrmann, W. A. Chem. Rev. 1997, 97, 3197.  doi: 10.1021/cr9703212

    51. [51]

      Herrmann, W. A.; Kühn, F. E. Acc. Chem. Res. 1997, 30, 169.  doi: 10.1021/ar9601398

    52. [52]

      Wang, F.; Gao, K.; Wang, C. Acta Chim. Sinica 2007, 65, 2211(in Chinese).
       

    53. [53]

      Chen, J.; Du, X.; Yu, T.; Zeng, Y.; Zhang, X.; Li, Y. Acta Chim. Sinica 2016, 74, 523(in Chinese).
       

    54. [54]

      Abu-Omar, M. M.; Appelman, E. H.; Espenson, J. H. Inorg. Chem. 1996, 35, 7751.  doi: 10.1021/ic960701q

    55. [55]

      Gable, K. P. Adv. Organomet. Chem. 1997, 41, 127.  doi: 10.1016/S0065-3055(08)60438-4

    56. [56]

      Espenson, J. H. Adv. Inorg. Chem. 2003, 54, 157.  doi: 10.1016/S0898-8838(03)54003-X

    57. [57]

      Kühn, F. E.; Scherbaum, A.; Herrmann, W. A. J. Organomet. Chem. 2004, 689, 4149.  doi: 10.1016/j.jorganchem.2004.08.018

    58. [58]

      Korstanje, T. J.; Jastrzebski, J. T. B. H.; Klein Gebbink, R. J. M. Chem.-Eur. J. 2013, 19, 13224.  doi: 10.1002/chem.v19.39

    59. [59]

      Korstanje, T. J.; de Waard, E. F.; Jastrzebski, J. T. B. H.; Klein Gebbink, R. J. M. ACS Catal. 2012, 2, 2173.  doi: 10.1021/cs300455w

    60. [60]

      Herrmann, W. A.; Marz, D.; Herdtweck, E.; Schiifer, A.; Wagner, W.; Kneuper, H. J. Angew. Chem. Int. Ed. 1987, 26, 462.  doi: 10.1002/(ISSN)1521-3773

    61. [61]

      Gable, K. P.; Phan, T. N. J. Am. Chem. Soc. 1994, 116, 833.  doi: 10.1021/ja00082a002

    62. [62]

      Gable, K. P. Organometallics 1994, 13, 2486.  doi: 10.1021/om00018a048

    63. [63]

      Cook, G. K.; Andrews, M. A. J. Am. Chem. Soc. 1996, 118, 9448.  doi: 10.1021/ja9620604

    64. [64]

      Gable, K. P. ; Ross, B. ACS Symposium Series, Vol. 921, Eds. : Bozell, J. J. ; Patel, M. K. American Chemical Society, Washington, DC, 2006, Chapter 11.

    65. [65]

      Bergman, R. G.; Cundari, T. R.; Gillespie, A. M.; Gunnoe, T. B.; Harman, W. D.; Klinckman, T. R.; Temple, M. D.; White, D. P. Organometallics 2003, 22, 2331.  doi: 10.1021/om021048j

    66. [66]

      Raju, S.; Jastrzebski, J. T. B. H.; Lutz, M.; Klein Gebbink, R. J. M. ChemSusChem 2013, 6, 1673.  doi: 10.1002/cssc.201300364

    67. [67]

      Raju, S.; Jastrzebski, J. T. B. H.; Lutz, M.; Witteman, L.; Dethlefsen, J. R.; Fristrup, P.; Moret, M. E.; Klein Gebbink, R. J. M. Inorg. Chem. 2015, 54, 11031.  doi: 10.1021/acs.inorgchem.5b02366

    68. [68]

      Raju, S.; van Slagmaat, C. A. M. R.; Li, J.; Lutz, M.; Jastrzebski, J. T. B. H.; Moret, M. E.; Klein Gebbink, R. J. M. Organometallics 2016, 35, 2178.  doi: 10.1021/acs.organomet.6b00120

    69. [69]

      Yanagi, T.; Suzuki, H.; Oishi, M. Chem. Lett. 2013, 42, 1403.  doi: 10.1246/cl.130699

    70. [70]

      Shimogawa, R.; Takao, T.; Suzuki, H. Organometallics 2014, 33, 289.  doi: 10.1021/om401035y

    71. [71]

      Sun, H. M.; Hu, C.; Hao, Z. M.; Zuo, Y. J.; Wang, T. C.; Zhong, C. M. Chin. J. Org. Chem. 2015, 35, 1904(in Chinese).
       

    72. [72]

      Hillea, C.; Kühn, F. E. Dalton Trans. 2016, 45, 15.  doi: 10.1039/C5DT03641K

    73. [73]

      Ziegler, J. E.; Zdilla, M. J.; Evans, A. J.; Abu-Omar, M. M. Inorg. Chem. 2009, 48, 9998.  doi: 10.1021/ic901792b

    74. [74]

      Bi, S. W.; Wang, J. Y.; Liu, L. J.; Li, P.; Lin, Z. Y. Organometallics 2012, 31, 6139.  doi: 10.1021/om300485w

    75. [75]

      Larson, R. T.; Samant, A.; Chen, J.; Lee, W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D. J. Am. Chem. Soc. 2017, 139, 14001.  doi: 10.1021/jacs.7b07801

    76. [76]

      Ahmad, I.; Chapman, G.; Nicholas, K. M. Inorg. Chem. 2010, 49, 4744.  doi: 10.1021/ic100467p

    77. [77]

      Vkuturi, S.; Chapman, G.; Ahmad, I.; Nicholas, K. M. Organometallics 2011, 30, 2810.  doi: 10.1021/om2001662

    78. [78]

      Arceo, E.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2010, 132, 11408.  doi: 10.1021/ja103436v

    79. [79]

      Sousa, S. C.; Fernandes, A. C. Tetrahedron Lett. 2011, 52, 6960.  doi: 10.1016/j.tetlet.2011.10.085

    80. [80]

      Yi, J.; Liu, S.; Abu-Omar, M. M. ChemSusChem 2012, 5, 1401.  doi: 10.1002/cssc.v5.8

    81. [81]

      Canale, V.; Tonucci, L.; Bressana, M.; d'Alessandro, N. Catal. Sci. Technol. 2014, 4, 3697.  doi: 10.1039/C4CY00631C

    82. [82]

      Shiramizu, M.; Toste, F. D. Angew. Chem. Int. Ed. 2012, 51, 8082.  doi: 10.1002/anie.v51.32

    83. [83]

      Qu, S. L.; Dang, Y. F.; Wen, M. W.; Wang, Z. X. Chem.-Eur. J. 2013, 19, 3827.  doi: 10.1002/chem.201204001

    84. [84]

      Boucher-Jacobs, C.; Nicholas, K. M. ChemSusChem 2013, 6, 597.  doi: 10.1002/cssc.201200781

    85. [85]

      Shiramizu, M.; Toste, F. D. Angew. Chem. Int. Ed. 2013, 52, 12905.  doi: 10.1002/anie.201307564

    86. [86]

      Wang, G.; Jimtaisong, A.; Luck, R. L. Organometallics 2004, 23, 4522.  doi: 10.1021/om049669v

    87. [87]

      Morrill, C.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 2842.  doi: 10.1021/ja044054a

    88. [88]

      Morrill, C.; Beutner, G. L.; Grubbs, R. H. J. Org. Chem. 2006, 71, 7813.  doi: 10.1021/jo061436l

    89. [89]

      Herrmann, A. T.; Saito, T.; Stivala, C. E.; Tom, J.; Zakarian, A. J. Am. Chem. Soc. 2010, 132, 5962.  doi: 10.1021/ja101673v

    90. [90]

      Davis, J.; Srivastava, R. S. Tetrahedron Lett. 2014, 55, 4178.  doi: 10.1016/j.tetlet.2014.05.044

    91. [91]

      Li, X. K.; Wu, D.; Lu, T.; Yi, G. S.; Su, H. B.; Zhang, Y. G. Angew. Chem. Int. Ed. 2014, 53, 4200.  doi: 10.1002/anie.201310991

    92. [92]

      Shin, N.; Kwon, S.; Moon, S.; Hong, C. H.; Kim, Y. G. Tetrahedron 2017, 73, 4758.  doi: 10.1016/j.tet.2017.06.053

    93. [93]

      McClain, J. M.; Nicholas, K. M. ACS Catal. 2014, 4, 2109.  doi: 10.1021/cs500461v

    94. [94]

      Boucher-Jacobs, C.; Nicholas, K. M. Organometallics 2015, 34, 1985.  doi: 10.1021/acs.organomet.5b00226

    95. [95]

      Arterburn, J. B.; Liu, M.; Perry, M. C. Helv. Chim. Acta 2002, 85, 3225.  doi: 10.1002/1522-2675(200210)85:10<3225::AID-HLCA3225>3.0.CO;2-H

    96. [96]

      Denning, A. L.; Dang, H.; Liu, Z.; Nicholas, K. M.; Jentoft, F. C. ChemCatChem 2013, 5, 3567.  doi: 10.1002/cctc.201300545

    97. [97]

      Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Angew. Chem. Int. Ed. 2015, 54, 1897.  doi: 10.1002/anie.201410352

    98. [98]

      Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6, 3213.  doi: 10.1021/acscatal.6b00491

    99. [99]

      Tazawa, S.; Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6, 6393.  doi: 10.1021/acscatal.6b01864

    100. [100]

      Sandbrink, L.; Klindtworth, E.; Islam, H.; Beale, A. M.; Palkovits, R. ACS Catal. 2016, 6, 677.  doi: 10.1021/acscatal.5b01936

    101. [101]

      Li, X. K.; Zhang, Y. G. ChemSusChem 2016, 9, 2774.  doi: 10.1002/cssc.201600865

    102. [102]

      Hills, L.; Moyano, R.; Montilla, F.; Pastor, A.; Galindo, A.; Álvarez, E.; Marchetti, F.; Pettinari, C. Eur. J. Inorg. Chem. 2013, 3352.
       

    103. [103]

      Dethlefsen, J. R.; Lupp, D.; Oh, B. C.; Fristrup, P. ChemSusChem 2014, 7, 425.  doi: 10.1002/cssc.201300945

    104. [104]

      Lupp, D.; Christensen, N. J.; Dethlefsen, J. R.; Fristrup, P. Chem.-Eur. J. 2015, 21, 3435.  doi: 10.1002/chem.v21.8

    105. [105]

      Dethlefsen, J. R.; Lupp, D.; Teshome, A.; Nielsen, L. B.; Fristrup, P. ACS Catal. 2015, 5, 3638.  doi: 10.1021/acscatal.5b00427

    106. [106]

      Beckerle, K.; Sauer, A.; Spaniol, T. P.; Okuda, J. Polyhedron 2016, 116, 105.  doi: 10.1016/j.poly.2016.03.053

    107. [107]

      Sandbrink, L.; Beckerle, K.; Meiners, I.; Liffmann, R.; Rahimi, K.; Okuda, J.; Palkovits, R. ChemSusChem 2017, 10, 1375.  doi: 10.1002/cssc.v10.7

    108. [108]

      Chapman Jr., G.; Kenneth, M.; Nicholas, K. M. Chem. Commun. 2013, 49, 8199.  doi: 10.1039/c3cc44656e

    109. [109]

      Galindo, A. Inorg. Chem. 2016, 55, 2284.  doi: 10.1021/acs.inorgchem.5b02649

    110. [110]

      Poutas, L. C. V.; Reis, M. C.; Sanz, R.; Lopez, C. S.; Faza, O. N. Inorg. Chem. 2016, 55, 11372.  doi: 10.1021/acs.inorgchem.6b01916

    111. [111]

      Jiang, Y.; Jiang, J.; Fu, Y. Organometallics 2016, 35, 3388.  doi: 10.1021/acs.organomet.6b00602

    112. [112]

      Geary, L. M.; Chen, T. Y.; Montgomery, T. P.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 5920.  doi: 10.1021/ja502659t

    113. [113]

      Gopaladasu, T. V.; Nicholas, K. M. ACS Catal. 2016, 6, 1901.  doi: 10.1021/acscatal.5b02667

    114. [114]

      Kwok, K. M.; Choong, C. K. S.; Ong, D. S. W.; Ng, J. C. Q.; Gwie, C. G.; Chen, L.; Borgna, A. ChemCatChem 2017, 9, 2443.  doi: 10.1002/cctc.v9.13

    115. [115]

      Stanowski, S.; Nicholas, K. M.; Srivastava, R. S. Organometallics 2012, 31, 515.  doi: 10.1021/om200447z

  • 加载中
    1. [1]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    2. [2]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    6. [6]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    7. [7]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    8. [8]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    9. [9]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    16. [16]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    17. [17]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(59)
  • Abstract views(3762)
  • HTML views(861)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return