Citation: Zhou Yuanchun, Zhou Zhi, Du Wei, Chen Yingchun. Asymmetric Inverse-Electron-Demand Diels-Alder Reaction of 2-Pyrone and 2, 5-Dienones via HOMO-Activation[J]. Acta Chimica Sinica, ;2018, 76(5): 382-386. doi: 10.6023/A18040131 shu

Asymmetric Inverse-Electron-Demand Diels-Alder Reaction of 2-Pyrone and 2, 5-Dienones via HOMO-Activation

  • Corresponding author: Du Wei, duweiyb@scu.edu.cn Chen Yingchun, ycchen@scu.edu.cn
  • Received Date: 5 April 2018
    Available Online: 9 May 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21772126) and Sichuan University Distinguished Young Scientist Program (No. 2017SCU04A15)Sichuan University Distinguished Young Scientist Program 2017SCU04A15the National Natural Science Foundation of China 21772126

Figures(4)

  • The bicyclic lactones possess multiple reactive sites, and are usually employed as the key intermediates in the synthesis of natural products and bioactive substances. Among the methods for the construction of these chiral skeletons, the asymmetric Diels-Alder (DA) reaction with 2-pyrone substrates represents one of the most straightforward protocols, generally with high stereocontrol. However, in regard to the electron-deficient 2-pyrone substrates, the corresponding asymmetric DA reactions usually rely on LUMO-activation by chiral Lewis acids, suffering from relatively narrow substitutions and functional group limitations. As a result, the development of new activation modes for this type of DA reactions is in high demand. Here we report an asymmetric inverse-electron-demand Diels-Alder (IEDDA) reaction of 3-methoxycarbonyl-2-pyrone and cyclic 2, 5-dienones in the presence of a primary amine derived from cinchona alkaloid, through the in situ generation of extended trienamine species. In this case, the remote δ, e-C=C bond of 2, 5-dienone substrates is activated via a HOMO-raising strategy. A variety of bicyclic lactones with contiguous stereogenic centers were produced in moderate to good yields (46%~82%) with excellent diastereo-and enantioselectivity (>19:1 dr, 93%~99% ee). In addition, the cycloadduct underwent the ring-opening reaction with methanol, affording a cyclohexenol derivative with dense substitutions in an excellent yield with a retained ee value. Therefore, the current method supplies an efficient tool to construct chiral bicyclic lactones with high molecular complexity under mild aminocatalytic conditions, which might have potential application in organic synthesis and medicinal chemistry. A representative procedure for the asymmetric IEDDA reaction is as follows:3-Methoxycarbonyl-2-pyrone 1 (0.1 mmol), cyclic 2, 5-dienone 2 (0.2 mmol), amine catalyst C2 (0.02 mmol) and acid A4 (0.04 mmol) were added into an oven-dried vial equipped with a magnetic stirbar. p-Xylene (1.0 mL) was added and the mixture was stirred at 60℃ and monitored by TLC. After completion, the residue was purified by flash chromatography on silica gel eluting with petroleum ether/ethyl acetate (8:1 to 4:1) to afford the product 3.
  • 加载中
    1. [1]

      (a) Luxenburger, A. Tetrahedron 2003, 59, 3297. (b) Huang, C. ; Li, W. ; Ma, F. ; Li, Q. ; Asada, Y. ; Koike, K. Chem. Pharm. Bull. 2012, 60, 1324.

    2. [2]

      (a) Posner, G. H. ; Ishihara, Y. Tetrahedron Lett. 1994, 35, 7545. (b) Nicolaou, K. C. ; Liu, J. J. ; Yang, Z. ; Ueno, H. ; Sorensen, E. J. ; Claiborne, C. F. ; Guy, R. K. ; Hwang, C. K. ; Nakada, M. ; Nantermet, P. G. J. Am. Chem. Soc. 1995, 117, 634. (c) Stigers, K. D. ; Mar-Tang, R. ; Bartlett, P. A. J. Org. Chem. 1999, 64, 8409. (d) Burch, P. ; Binaghi, M. ; Scherer, M. ; Wentzel, C. ; Bossert, D. ; Eberhardt, L. ; Neuburger, M. ; Scheiffele, P. ; Gademann, K. Chem. Eur. J. 2013, 19, 2589. (e) Zhao, Y. M. ; Maimone, T. J. Angew. Chem., Int. Ed. 2015, 54, 1223. (f) Shimizu, H. ; Okamura, H. ; Iwagawa, T. ; Nakatani, M. Tetrahedron 2001, 57, 1903. (g) Lee, J. -H. ; Cho, C. -G. Org. Lett. 2016, 18, 5126.

    3. [3]

      (a) Afarinkia, K. ; Vinader, V. ; Nelson, T. D. ; Posner, G. H. Tetrahedron 1992, 48, 9111. (b) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650. (c) Heravi, M. M. ; Vavsari, V. F. RSC Adv. 2015, 5, 50890.

    4. [4]

      (a) Wang, Y. ; Li, H. ; Wang, Y. -Q. ; Liu, Y. ; Foxman, B. M. ; Deng, L. J. Am. Chem. Soc. 2007, 129, 6364. (b) Singh, R. P. ; Bartelson, K. ; Wang, Y. ; Su, H. ; Lu, X. ; Deng, L. J. Am. Chem. Soc. 2008, 130, 2422. (c) Bartelson, K. J. ; Singh, R. P. ; Foxman, B. M. ; Deng, L. Chem. Sci. 2011, 2, 1940.

    5. [5]

      Soh, J. Y.-T.; Tan, C.-H. J. Am. Chem. Soc. 2009, 131, 6904.  doi: 10.1021/ja900582a

    6. [6]

      Shi, L.-M.; Dong, W.-W.; Tao, H.-Y.; Dong, X.-Q.; Wang, C.-J. Org. Lett. 2017, 19, 4532.  doi: 10.1021/acs.orglett.7b02107

    7. [7]

      For a comprehensive review, see: Jiang, X. ; Wang, R. Chem. Rev. 2013, 113, 5515. 

    8. [8]

      (a) Markó, I. E. ; Evans, G. R. Tetrahedron Lett. 1994, 35, 2771. (b) Markó, I. E. ; Evans, G. R. ; Declercq, J. -P. Tetrahedron 1994, 50, 4557. (c) Posner, G. H. ; Carry, J. -C. ; Kyoo Lee, J. ; Bull, D. S. ; Dai, H. Tetrahedron Lett. 1994, 35, 1321. (d) Posner, G. H. ; Eydoux, F. ; Lee, J. K. ; Bull, D. S. Tetrahedron Lett. 1994, 35, 7541.

    9. [9]

      For a review, see: Li, J. -L. ; Liu, T. -Y. ; Chen, Y. -C. Acc. Chem. Res. 2012, 45, 1491.

    10. [10]

    11. [11]

    12. [12]

      For other examples, see: (a) Chen, P. -Q. ; Xiao, Y. -C. ; Yue, C. -Z. ; Chen, Y. -C. Org. Chem. Front. 2014, 1, 490. (b) Zhan, G. ; He, Q. ; Yuan, X. ; Chen, Y. -C. Org. Lett. 2014, 16, 6000. (c) Shi, M. -L. ; Zhan, G. ; Zhou, S. -L. ; Du, W. ; Chen, Y. -C. Org. Lett. 2016, 18, 6480. (d) He, X. -L. ; Zhao, H. -R. ; Duan, C. -Q. ; Du, W. ; Chen, Y. -C. Org. Lett. 2018, 20, 804. (e) Prieto, L. ; Talavera, G. ; Uria, U. ; Reyes, E. ; Vicario, J. L. ; Carrillo, L. Chem. Eur. J. 2014, 20, 2145.

    13. [13]

      For a review, see: Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 9748. 

    14. [14]

      For a review of additive effect, see: Hong, L. ; Sun, W. ; Yang, D. ; Li, G. ; Wang, R. Chem. Rev. 2016, 116, 4006.

    15. [15]

      For more details, see the Supporting Information.

    16. [16]

      CCDC-1834913(3g) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    8. [8]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    9. [9]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    10. [10]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

Metrics
  • PDF Downloads(21)
  • Abstract views(1877)
  • HTML views(449)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return