Citation: Yin Xinchi, Jiang You, Chu Shiying, Weng Guofeng, Fang Xiang, Pan Yuanjiang. Copper-Catalyzed Decarboxylative Iodination Reaction in the Gas Phase[J]. Acta Chimica Sinica, ;2018, 76(6): 436-439. doi: 10.6023/A18020080 shu

Copper-Catalyzed Decarboxylative Iodination Reaction in the Gas Phase

  • Corresponding author: Fang Xiang, fangxiang@nim.ac.cn Pan Yuanjiang, panyuanjiang@zju.edu.cn
  • Received Date: 26 February 2018
    Available Online: 28 June 2018

    Fund Project: the National Natural Science Foundation of China 21532005the National Key Basic Research Program of China 2016YEF0200503the National Scientific Instrumentation Grant Program of China 2011YQ09000501Project supported by the National Natural Science Foundation of China (No. 21532005), the National Key Basic Research Program of China (No. 2016YEF0200503), and the National Scientific Instrumentation Grant Program of China (Nos. 2012YQ12004907, 2011YQ09000501)the National Scientific Instrumentation Grant Program of China 2012YQ12004907

Figures(5)

  • Organocopper complexes play the key role in Cu-catalyzed organic reaction. This manuscript offered a method to synthesize ligand-ligated organocopper complexes. Copper acetate was used as the catalyst and 2-(aminomethyl)pyridine (2-AMP) as the ligand to react with benzoic acid to generate the organocopper complex. This complex (A1) was easily transferred from solution to gas phase via electrospray ionization mass spectrometry (ESI-MS). Firstly, the collision-induced dissociation (CID) experiment of complex ion A1 was carried out in the ion-trap analyzer to investigate the gas-phase reactivity of it (the single isotope ion with 63Cu was isolated and used in MS/MS and next ion-molecule reaction). The decarboxylation reaction was taken place upon CID to generate the fragment ion B1. Next, the ion-molecule reaction (I-MR) of B1 was introduced after ion B1 was isolated, while allyl iodide was used as the neutral reagent. The iodine group transfer product ion C1 was obtained from the ion-molecule reation. The valence state of the central metal Cu changed from +2 in B1 to +3 in C1 during this process. Then ion A3 was dissociated to form the Cu(I) complex D1 with a neutral loss of iodobenzene upon CID. During these steps, the reagent benzoic acid reacted with allyl iodide in the gas phase with Cu2+ as catalyst and 2-AMP as ligand to produce iodobenzene, thus the copper-catalyzed decarboxylative iodination reaction was created in the gas phase. From the result, the mechanism of decarboxylative iodination reaction was speculated and carefully studied. Meanwhile, this reaction was also suitable for different carboxylic acids and bidentate nitrogen ligands. The aim of this manuscript is to study the reactive copper complexes in isolated environment and solvent free-condition. The gas phase mass spectrometric results supported the proposed mechanism. This method not only detected the gas-phase reactivities of a series of organocopper complexes, but also provided significant information of the mechanism of copper-catalyzed decarboxylative iodination reaction in the condensed phase.
  • 加载中
    1. [1]

      Shepard, A. F.; Winslow, N. R.; Johnson, J. R. J. Am. Chem. Soc. 1930, 52, 2083.  doi: 10.1021/ja01368a057

    2. [2]

      Hubacher, M. H. Anal. Chem. 1949, 21, 945.  doi: 10.1021/ac60032a017

    3. [3]

      (a) Chamchaang, W. ; Chantarasiri, N. ; Chaona, S. ; Thebtaranonth, C. ; Thebtaranonth, Y. Tetrahedron 1984, 40, 1727. (b) Lu, P. F. ; Sanchez, C. ; Cornella, J. ; Larrosa, I. Org. Lett. 2009, 11, 5710. (c) Cornella, J. ; Sanchez, C. ; Banawa, D. ; Larrosa, I. Chem. Commun. 2009, 7176.

    4. [4]

      (a) Li, Z. ; Zheng, J. ; Hu, W. ; Li, J. ; Wu, W. ; Jiang, H. Org. Chem. Front. 2017, 4, 1363. (b) Yuan, J. W. ; Yang, L. R. ; Mao, P. ; Qu, L. B. Org. Chem. Front. 2017, 4, 545.

    5. [5]

      Guan, B; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 1564(in Chinese).
       

    6. [6]

      (a) Frisch, A. C. ; Beller, M. Angew. Chem. Int. Ed. 2005, 44, 674. (b) Kambe, N. ; Iwasaki, T. ; Terao, J. Chem. Soc. Rev. 2011, 40, 4937. (c) Tasker, S. Z. ; Standley, E. A. ; Jamison, T. F. Nature 2014, 509, 299.

    7. [7]

      Eisch, J. J. Organometallics 2002, 21, 5439.  doi: 10.1021/om0109408

    8. [8]

      (a) Goossen, L. J. ; Collet, F. ; Goossen, K. Isr. J. Chem. 2010, 50, 617. (b) Rodriguez, N. ; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030. (c) Shang, R. ; Liu, L. Sci. China Chem. 2011, 54, 1670. (d) Cornella, J. ; Larrosa, I. Synthesis 2012, 653. (e) Dzik, W. I. ; Lange, P. P. ; Goossen, L. J. Chem. Sci. 2012, 3, 2671.

    9. [9]

      (a) Yamanaka, M. ; Kato, S. ; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 6287. (b) Yamanaka, M. ; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 4697. (c) Candish, L. ; Standley, E. A. ; Gómez-Suárez, A. ; Mukherjee, S. ; Glorius, F. Chem. Eur. J. 2016, 22, 9971. (d) Ni, S. ; Sha, W. ; Zhang, L. ; Xie, C. ; Mei, H. ; Han, J. ; Pan, Y. Org. Lett. 2016, 18, 712. (e) Perry, G. J. P. ; Quibell, J. M. ; Panigrahi, A. ; Larrosa, I. J. Am. Chem. Soc. 2017, 139, 11527.

    10. [10]

      Nakamura, E.; Mori, S. Angew. Chem. Int. Ed. 2000, 39, 3750.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      (a) Bertz, S. H. ; Cope, S. ; Murphy, M. ; Ogle, C. A. ; Taylor, B. J. J. Am. Chem. Soc. 2007, 129, 7208. (b) Hu, H. ; Snyder, J. P. J. Am. Chem. Soc. 2007, 129, 7210.

    12. [12]

      (a) Schröder, D. Acc. Chem. Res. 2012, 45, 1521. (b) Coelho, F. ; Eberlin, M. N. Angew. Chem. Int. Ed. 2011, 50, 5261. (c) Gronert, S. Chem. Rev. 2001, 101, 329. (d) Gronert, S. Mass Spectrom. Rev. 2005, 24, 100. (e) Rijs, N. ; Khairallah, G. N. ; Waters, T. O'Hair, R. A. J. J. Am. Chem. Soc. 2008, 130, 1069.

    13. [13]

      (a) Meyer, M. M. ; Khairallah, G. N. ; Kass, S. R. ; O'Hair, R. A. J. Angew. Chem. Int. Ed. 2009, 48, 2934. (b) Schlangen, M. ; Schröder, D. ; Schwarz, H. Angew. Chem. Int. Ed. 2007, 46, 1641. (c) Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096.

    14. [14]

      (a) Rijs, N. ; Yates, B. F. ; O'Hair, R. A. J. Chem. Eur. J. 2010, 16, 2674. (b) Rijs, N. ; Yoshikai, N. ; Nakamura, E. ; O'Hair, R. A. J. J. Am. Chem. Soc. 2012, 134, 2569. (c) Rijs, N. ; O'Hair, R. A. J. Organometallics 2012, 31, 8012. (d) Sharif, H. A. ; Vikse, K. L. ; Khairallah, G. N. ; O'Hair, R. A. J. Organometallics 2013, 32, 5416. (e) Rijs, N. ; González-Navarrete, P. ; Schlangen, M. ; Schwarz, H. J. Am. Chem. Soc. 2016, 138, 3125. (f) Geng, C. ; Li, J. ; Weiske, T. ; Schlangen, M. ; Shaik, S. ; Schwarz, H. J. Am. Chem. Soc. 2017, 139, 1684.

    15. [15]

      Zhang, X.; Bai, X.; Fang, L.; Jiang, K.; Li, Z. J. Am. Soc. Mass Spectrom. 2016, 27, 940.  doi: 10.1007/s13361-016-1339-7

    16. [16]

      Jiang, X.; Huang, H.; Chai, Y.; Lohr, T. L.; Yu, S.; Lai, W.; Pan, Y.; Delferro, M.; Marks, T. J. Nat. Chem. 2017, 9, 188.  doi: 10.1038/nchem.2637

    17. [17]

      Chai, Y.; Shen, S.; Weng, G.; Pan, Y. Chem. Commun. 2014, 50, 11668.  doi: 10.1039/C4CC04168B

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    8. [8]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    9. [9]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    15. [15]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(14)
  • Abstract views(1823)
  • HTML views(321)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return