Citation: Wang Ming, Jiang Xuefeng. Efficient Fluoren-9-ones Construction through CO/I Exchange of Diaryliodonium Salts[J]. Acta Chimica Sinica, ;2018, 76(5): 377-381. doi: 10.6023/A18020073 shu

Efficient Fluoren-9-ones Construction through CO/I Exchange of Diaryliodonium Salts

  • Corresponding author: Jiang Xuefeng, xfjiang@chem.ecnu.edu.cn
  • Received Date: 20 February 2018
    Available Online: 13 May 2018

    Fund Project: the National Natural Science Foundation of China 21502054Project supported by the National Natural Science Foundation of China (Nos. 21722202, 21672069, 21472050, 21502054), Doctoral Fund of Ministry of Education of China (No. 20130076110023)Doctoral Fund of Ministry of Education of China 20130076110023the National Natural Science Foundation of China 21472050the National Natural Science Foundation of China 21722202the National Natural Science Foundation of China 21672069

Figures(3)

  • Fluoren-9-ones derivatives have attracted much attention due to their extensively applications in pharmaceuticals, natural products and photoelectric materials. In recent decades, C—H bond functionalization is the most powerful method to access fluorenone skeleton. Although these interesting studies exploited highly efficient routes to the fluoren-9-one, in many examples, it is easy to produce two isomers in the meta-substituted substrates because of the existence of two different C—H bonds in the ortho-position. It is still indispensable to develop efficient methods for fluoren-9-ones construction. Diaryliodonium salt as a stable and easily prepared reagent reported by Hartmann and Meyer since 1894, which has been one of the most efficient arylation reagents in organic synthesis. Generally, diaryliodonium salt was employed as a single arylation reagent. In the past few years, the both aryl employments of diaryliodonium salt were explored due to the improvement of atom economy. Recently, we developed the atom exchange reactions of intramolecular and intermolecular diaryliodonium salts for sulfide, selenide, sulfone, acridine and carbazole constructions, which could employ both aryl groups of diaryliodonium salt. Continuous with our research of using such atom exchange method for significant molecular construction, herein, a CO/I exchange method of diaryliodonium salts with carbon monoxide was developed for construction of functional fluoren-9-ones. Both aryl groups in diaryliodonium salt were fully exerted in this transformation, which proceeded smoothly in a CO balloon atmosphere to afford the desired products in moderate to excellent yields with good functional-group compatibility. Note that this protocol avoided the emerging of isomers, which were easy to be formed in C—H bond functionalization method. A representative procedure for this reaction is as following:Under a CO atmosphere, Pd(OAc)2 (0.01 mmol), dppf (0.012 mmol), K3PO4 (0.2 mmol), diaryliodonium salts 1 and toluene (1 mL) were added to a flame-dried Schlenk tube. The resulting mixture was stirred at 80℃ for 24 h. Water (5 mL) was added and the solution was extracted with ethyl acetate, organic layers were combined, dried over sodium sulfate. After evaporation of solvent, the residue was purified by column chromatography to give the corresponding products.
  • 加载中
    1. [1]

      Selected examples, see: (a) Krueger, R. F. ; Mayer, G. D. Science 1970, 169, 1213; (b) Greenlee, M. L. ; Laub, J. B. ; Rouen, G. P. ; DiNinno, F. ; Hammond, M. L. ; Huber, J. L. ; Sundelof, J. G. ; Hammond, G. G. Bioorg. Med. Chem. Lett. 1999, 9, 3225; (c) Perry, P. J. ; Read, M. A. ; Davies, R. T. ; Gowan, S. M. ; Reszka, A. P. ; Wood, A. A. ; Kelland, L. R. ; Neidle, S. J. Med. Chem. 1999, 42, 2679.

    2. [2]

      (a) Talapatra, S. K. ; Bose, S. ; Malik, A. K. ; Talapatra, B. Tetrahedron 1985, 41, 2765; (b) Jone, Jr., W. D. ; Ciske, F. L. J. Org. Chem. 1996, 61, 3920.

    3. [3]

      Selected examples, see: (a) Uckert, F. ; Tak, Y. -H. ; Müllen, K. ; Bässler, H. Adv. Mater. 2000, 12, 905; (b) Gong, X. ; Moses, D. ; Heeger, A. J. J. Phys. Chem. B 2004, 108, 8601; (c) Qin, C. ; Islam, A. ; Han, L. J. Mater. Chem. 2012, 22, 19236.

    4. [4]

      Representative reviews, see: (a) Wu, X. -F. ; Neumann, H. ; Beller, M. Chem. Soc. Rev. 2011, 40, 4986; (b) Chen, J. -R. ; Hu, X. -Q. ; Lu, L. -Q. ; Xiao, W. -J. Chem. Rev. 2015, 115, 5301. Selected examples, see: (c) Campo, M. A. ; Larock, R. C. Org. Lett. 2000, 2, 3675; (d) Campo, M. A. ; Larock, R. C. J. Org. Chem. 2002, 67, 5616; (e) Zhao, J. ; Yue, D. ; Campo, M. A. ; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 5288; (f) Sun, C. -L. ; Liu, N. ; Li, B. -J. ; Yu, D. -G. ; Wang, Y. ; Shi, Z. -J. Org. Lett. 2010, 12, 184; (g) Li, H. ; Zhu, R. -Y. ; Shi, W. -J. ; He, K. -H. ; Shi, Z. -J. Org. Lett. 2012, 14, 4850; (h) Gandeepan, P. ; Hung, C. -H. ; Cheng, C. -H. Chem. Commun. 2012, 48, 9379; (i) Song, J. ; Wei, F. ; Sun, W. ; Li, K. ; Tian, Y. ; Liu, C. ; Li, Y. ; Xie, L. Org. Lett. 2015, 17, 2106; (j) Sun, D. ; Li, B. ; Lan, J. ; Huang, Q. ; You, J. Chem. Commun. 2016, 52, 3635; (k) Wu, J. ; Liu, Y. ; Ma, X. ; Liu, P. ; Gu, C. ; Dai, B. Chin. J. Chem. 2017, 35, 1391.

    5. [5]

      Hartmann, C.; Meyer, V. Ber. Dtsch. Chem. Ges. 1894, 27, 426.  doi: 10.1002/(ISSN)1099-0682

    6. [6]

      Representative reviews, see: (a) Stang, P. J. ; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123; (b) Grushin, V. V. Chem. Soc. Rev. 2000, 29, 315; (c) Deprez, N. R. ; Sanford, M. S. Inorg. Chem. 2007, 46, 1924; (d) Zhdankin, V. V. ; Stang, P. J. Chem. Rev. 2008, 108, 5299; (e) Merritt, E. A. ; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052; (f) Yusubov, M. S. ; Maskaev, A. V. ; Zhdankin, V. V. ARKIVOC 2011, 370; (g) Kita, Y. ; Dohi, T. Chem. Rec. 2015, 15, 886; (h) Yoshimura, A. ; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328; (i) Wirth, T. Topics in Current Chemistry, 2016, 373, 1-316; (j) Fañanás-Mastral, M. Synthesis 2017, 49, 1905.

    7. [7]

      Selected examples, see: (a) Daugulis, O. ; Zaitsev, V. G. Angew. Chem. Int. Ed. 2005, 44, 4046; (b) Kalyani, D. ; Deprez, N. R. ; Desai, L. V. ; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330; (c) Deprez, N. R. ; Kalyani, D. ; Krause, A. ; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972; (d) Phipps, R. J. ; Grimster, N. P. ; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172; (e) Phipps, R. J. ; Gaunt, M. J. Science 2009, 323, 1593; (f) Deprez, N. R. ; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234; (g) Dohi, T. ; Ito, M. ; Yamaoka, N. ; Morimoto, K. ; Fujioka, H. ; Kita, Y. Angew. Chem., Int. Ed. 2010, 49, 3334; (h) Xiao, B. ; Fu, Y. ; Xu, J. ; Gong, T. -J. ; Dai, J. -J. ; Yi, J. ; Liu, L. J. Am. Chem. Soc. 2010, 132, 468; (i) Ciana, C. ; Phipps, R. J. Brandt, J. R. ; Meyer, F. ; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 458; (j) Storr, T. E. ; Greaney, M. F. Org. Lett. 2013, 15, 1410.

    8. [8]

    9. [9]

      Selected examples, see: (a) Kina, A. ; Miki, H. ; Cho, Y. -H. ; Hayashi, T. Adv. Synth. Catal. 2004, 346, 1728; (b) Aydin, J. ; Larsson, J. M. ; Selander, N. ; Szabo, K. J. Org. Lett. 2009, 11, 2852; (c) Cahard, E. ; Bremeyer, N. ; Gaunt, M. J. Angew. Chem., Int. Ed. 2013, 52, 9284; (d) Zhang, F. ; Das, S. ; Walkinshaw, A. J. ; Casitas, A. ; Taylor, M. ; Suero, M. G. ; Gaunt, M. J. J. Am. Chem. Soc. 2014, 136, 8851; (e) Holt, D. ; Gaunt, M. J. Angew. Chem., Int. Ed. 2015, 54, 7857; (f) Yang, M. -N. ; Yan, D. -M. ; Zhao, Q. -Q. ; Chen, J. -R. ; Xiao, W. -J. Org. Lett. 2017, 19, 5208.

    10. [10]

      Selected examples, see: (a) Ryan, J. H. ; Stang, P. J. Tetrahedron Lett. 1997, 38, 5061; (b) Ochiai, M. ; Kitagawa, Y. ; Takayama, N. ; Takaoka, Y. ; Shiro, M. J. Am. Chem. Soc. 1999, 121, 9233; (c) Aggarwal, V. K. ; Olofsson, B. Angew. Chem., Int. Ed. 2005, 44, 5516; (d) Allen, A. E. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 4260; (e) Bigot, A. ; Williamson, A. E. ; Gaunt, M. J. J. Am. Chem. Soc. 2011, 133, 13778; (f) Harvey, J. S. ; Simonovich, S. P. ; Jamison, C. R. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 13782.

    11. [11]

    12. [12]

      (a) Zhu, D. ; Liu, Q. ; Luo, B. ; Chen, M. ; Pi, R. ; Huang, P. ; Wen, S. Adv. Synth. Catal. 2013, 355, 2172; (b) Zhu, D. ; Wu, Y. ; Wu, B. ; Luo, B. ; Ganesan, A. ; Wu, F. -H. ; Pi, R. ; Huang, P. ; Wen, S. Org. Lett. 2014, 16, 2350; (c) Liu, Z. ; Zhu, D. ; Luo, B. ; Zhang, N. ; Liu, Q. ; Hu, Y. ; Pi, R. ; Huang, P. ; Wen, S. Org. Lett. 2014, 16, 5600; (d) Modha, S. G. ; Greaney, M. F. J. Am. Chem. Soc. 2015, 137, 1416; (e) Wu, B. ; Yoshikai, N. Angew. Chem., Int. Ed. 2015, 54, 8736; (f) Luo, B. ; Cui, Q. ; Luo, H. ; Hu, Y. ; Huang, P. ; Wen, S. Adv. Synth. Catal. 2016, 358, 2733; (g) Shimizu, M. ; Ogawa, M. ; Tamagawa, T. ; Shigitani, R. ; Nakatani, M. ; Nakano, Y. Eur. J. Org. Chem. 2016, 2785; (h) Teskey, C. J. ; Sohel, S. M. A. ; Bunting, D. L. ; Modha, S. G. ; Greaney, M. F. Angew. Chem., Int. Ed. 2017, 56, 5263.

    13. [13]

      (a) Wang, M. ; Fan, Q. ; Jiang, X. Org. Lett. 2016, 18, 5756; (b) Wang, M. ; Wei, J. ; Fan, Q. ; Jiang, X. Chem. Commun. 2017, 53, 2918; (c) Wang, M. ; Chen, S. ; Jiang, X. Org. Lett. 2017, 19, 4916; (d) Wang, M. ; Fan, Q. ; Jiang, X. Org. Lett. 2018, 20, 216.

    14. [14]

      CCDC 1525038(2j) can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

    15. [15]

      (a) Feng, M. ; Tang, B. ; Wang, N. ; Xu, H. -X. ; Jiang, X. Angew. Chem., Int. Ed. 2015, 54, 14960; (b) Willcox, D. ; Chappell, B. G. N. ; Hogg, K. F. ; Calleja, J. ; Smalley, A. P. ; Gaunt, M. J. Science 2016, 354, 851.

  • 加载中
    1. [1]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    2. [2]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    3. [3]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    10. [10]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    11. [11]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    12. [12]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    13. [13]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    14. [14]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    15. [15]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    16. [16]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    17. [17]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    18. [18]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    19. [19]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

Metrics
  • PDF Downloads(3)
  • Abstract views(845)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return