Citation: Guo Xiaoru, Yin Yongguang, Tan Zhiqiang, Liu Jingfu, Jiang Guibin. Catalytic Oxidation of Arsenic in Water by Silver Nanoparticles[J]. Acta Chimica Sinica, ;2018, 76(5): 387-392. doi: 10.6023/A18020067 shu

Catalytic Oxidation of Arsenic in Water by Silver Nanoparticles

  • Corresponding author: Liu Jingfu, jfliu@rcees.ac.cn
  • Received Date: 9 February 2018
    Available Online: 26 May 2018

    Fund Project: the National Natural Science Foundation of China 21337004the National Natural Science Foundation of China 21620102008the National Key R & D Program of China 2016YFA0203102Project supported by the National Key R & D Program of China (No. 2016YFA0203102), and the National Natural Science Foundation of China (Nos. 21337004, 21620102008)

Figures(6)

  • With the development of nanoscience and nanotechnology, nanomaterials have been applied in many areas including environments. Silver nanoparticles (AgNPs) are being widely used in drinking water disinfection due to their excellent bactericidal performance. As the bactericide, AgNPs could minimize or eliminate bacteria exceeding standards and water treatment membrane fouling. Arsenic contamination, especially in the underground water, has gained great attention from the environmental science community, demanding effective methods to eliminate or remove more acutely toxic inorganic species[i.e., As(Ⅲ) and As(Ⅴ)]. Given the good photocatalytic activity, AgNPs could have an impact on the transformaiton of As(Ⅲ) and As(Ⅴ). In this study, high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometer (HPLC-ICP/MS) were used to investigate the effects of some environmental relative factors like pH, natural organic matter, cation ions (e.g., Ca2+), and the intrinsic properties of AgNPs like size and coatings, on the conversion of the two main inorganic arsenic[As(Ⅲ) and As(Ⅴ)] in the aqueous solution in the presence of AgNPs. It was found that AgNPs showed no physical adsorption for As(Ⅲ), while resulted in significant catalytic oxidation of As(Ⅲ) into As(Ⅴ). Moreover, environmental factors including pH, sunlight, NOM, Ca2+, and properties of AgNPs (e.g., size, coating) showed significant effects on the catalytic oxidation of As(Ⅲ). The catalytic oxidation was also confirmed in the real environmental waters. Finally, the catalytic ability of AuNPs and AgNPs were compared to unveil the mechanism of catalytic oxidation of As(Ⅲ) by AgNPs. In addition to oxidation of superoxo or peroxo species formed due to activation of molecular oxygen by the electron transfer from negatively charged AgNPs, the redox potential of silver (φΘAg+/Ag0=0.80 V) mostly contributed to the transformation of As(Ⅲ) into As(Ⅴ). Therefore, given the coexisting of As(Ⅲ) and AgNPs in the water treatment system, AgNPs could play dual function in both sterilization and detoxification of As(Ⅲ), which paved the novel way to effectively treat As contamination.
  • 加载中
    1. [1]

      http://www.nanotechproject.org/cpi (accessed Feb 20, 2017).

    2. [2]

      Cao, X. L.; Tang, M.; Liu, F.; Nie, Y. Y.; Zhao, C. S. Colloid Surface B 2010, 8, 555.
       

    3. [3]

      Fendorf, S.; Michael, H. A.; Van Geen, A. Science 2010, 328, 1123.  doi: 10.1126/science.1172974

    4. [4]

      Yu, G. Q.; Sun, D. J.; Zheng, Y. Environ. Health Persp. 2007, 115, 636.  doi: 10.1289/ehp.9268

    5. [5]

      Berg, M.; Tran, H. C.; Nguyen, T. C.; Pham, H. V.; Schertenleib, R.; Giger, W. Environ. Sci. Technol. 2001, 35, 2621.  doi: 10.1021/es010027y

    6. [6]

      Karn, S. K. Environ. Pollut. 2015, 207, 434.  doi: 10.1016/j.envpol.2015.05.005

    7. [7]

      He, J.; Charlet, L. J. Hydrol. 2013, 492, 79.  doi: 10.1016/j.jhydrol.2013.04.007

    8. [8]

      Clancy, T. M.; Hayes, K. F.; Raskin, L. Environ. Sci. Technol. 2013, 47, 10799.  doi: 10.1021/es401749b

    9. [9]

      Smedley, P. L.; Kinniburgh, D. G. Appl. Geochem. 2002, 17, 517.  doi: 10.1016/S0883-2927(02)00018-5

    10. [10]

      Sadee, B.; Foulkes, M. E.; Hill, S. J. J. Anal. At. Spectrom. 2015, 30, 102.  doi: 10.1039/C4JA00269E

    11. [11]

      Kumar, A. R.; Riyazuddin, P. Trends Anal. Chem. 2010, 29, 1212.  doi: 10.1016/j.trac.2010.07.009

    12. [12]

      Yang, K.; Xing, B. S. Chem. Rev. 2010, 110, 5989.  doi: 10.1021/cr100059s

    13. [13]

      Tan, K. B.; Vakili, M.; Hord, B. A.; Poh, P. E.; Abdullah, A. Z.; Salamatinia, B. Sep. Purif. Technol. 2015, 150, 229.  doi: 10.1016/j.seppur.2015.07.009

    14. [14]

      Pena, M. E.; Korfiatis, G. P.; Patel, M.; Lippincott, L.; Meng, X. G. Water Res. 2005, 39, 2327.  doi: 10.1016/j.watres.2005.04.006

    15. [15]

      Hu, S.; Shi, Q. T.; Jing, C. Y. Environ. Sci. Technol. 2015, 49, 9707.  doi: 10.1021/acs.est.5b01520

    16. [16]

      Kanel, S. R.; Greneche, J. M.; Choi, H. Environ. Sci. Technol. 2006, 40, 2045.  doi: 10.1021/es0520924

    17. [17]

      Gibert, O.; de Pablo, J.; Cortina, J. L.; Ayora, C. Environ. Geochem. Hlth. 2010, 32, 373.  doi: 10.1007/s10653-010-9290-1

    18. [18]

      Xia, X. F.; Hua, Y. L.; Huang, X. Y.; Ling, L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 594.
       

    19. [19]

      Huang, X. Y.; Wang, W.; Ling L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 529.
       

    20. [20]

      Xi, B. D.; Wang, X. W.; Liu, W. J.; Xia, X. F.; Li, D. S.; He, L. S.; Wang, H. M.; Sun, W. J.; Yang, T. X.; Tao, W. Sep. Sci. Technol. 2014, 49, 2642.  doi: 10.1080/01496395.2014.939761

    21. [21]

      Holt, B. D.; Heraty, L. J.; Sturchio, N. C. Environ. Pollut. 2001, 113, 263.  doi: 10.1016/S0269-7491(00)00191-3

    22. [22]

      Palau, J.; Jamin, P.; Badin, A.; Vanhecke, N.; Haerens, B.; Brouyere, S.; Hunkeler, D. Water Res. 2016, 92, 235.  doi: 10.1016/j.watres.2016.01.057

    23. [23]

      Rittmann, B. E.; Stilwell, D.; Garside, J. C.; Amy, G. L.; Spangenberg, C.; Kalinsky, A.; Akiyoshi, E. Water Res. 2002, 36, 3387.  doi: 10.1016/S0043-1354(02)00033-7

    24. [24]

      Mascolo, G.; Ciannarella, R.; Balest, L.; Lopez, A. J. Hazard. Mater. 2008, 152, 1138.  doi: 10.1016/j.jhazmat.2007.07.120

    25. [25]

      Jeong, C. H.; Postigo, C.; Richardson, S. D.; Simmons, J. E.; Kimura, S. Y.; Marinas, B. J.; Barcelo, D.; Liang, P.; Wagner, E. D.; Plewa, M. J. Environ. Sci. Technol. 2015, 49, 13749.  doi: 10.1021/es506358x

    26. [26]

      Yates, M. V.; Malley, J.; Rochelle, P.; Hoffman, R. J. Am. Water Works Ass. 2006, 98, 93.
       

    27. [27]

      Mecha, C. A.; Pillay, V. L. J. Membrane Sci. 2014, 458, 149.  doi: 10.1016/j.memsci.2014.02.001

    28. [28]

      Liga, M. V.; Bryant, E. L.; Colvin, V. L.; Li, Q. L. Water Res. 2011, 45, 535.  doi: 10.1016/j.watres.2010.09.012

    29. [29]

      Muthu, K.; Priya, S. Spectrochim. Acta A 2017, 179, 66.  doi: 10.1016/j.saa.2017.02.024

    30. [30]

      Baruah, B.; Gabriel, G. J.; Akbashev, M. J.; Booher, M. E. Langmuir 2013, 29, 4225.  doi: 10.1021/la305068p

    31. [31]

      Joseph, S.; Mathew, B. J. Mol. Liq. 2015, 204, 184.  doi: 10.1016/j.molliq.2015.01.027

    32. [32]

      Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Chem.-Asian. J. 2006, 1, 888.  doi: 10.1002/(ISSN)1861-471X

    33. [33]

      Morallon, E.; Arias-Pardilla, J.; Calo, J. M.; Cazorla-Amoros, D. Electrochim. Acta 2009, 54, 3996.  doi: 10.1016/j.electacta.2009.02.023

    34. [34]

      Yu, S. J.; Yin, Y. G.; Liu, J. F. Environ. Sci. Proc. Impacts. 2013, 15, 78.  doi: 10.1039/C2EM30595J

    35. [35]

      Levard, C.; Hotze, E. M.; Lowry, G. V.; Brown, G. E. Environ. Sci. Technol. 2012, 46, 6900.  doi: 10.1021/es2037405

    36. [36]

      Yin, Y. G.; Liu, J. F.; Jiang, G. B. ACS Nano 2012, 6, 7910.  doi: 10.1021/nn302293r

    37. [37]

      Kloster, N.; Brigante, M.; Zanini, G.; Avena, M. Colloid. Surface. A 2013, 427, 76.  doi: 10.1016/j.colsurfa.2013.03.030

    38. [38]

      Wang, J.; Liu, J. J.; Guo, X. H.; Yan, L.; Lincoln, S. F. Front. Chem. Sci. Eng. 2016, 10, 432.  doi: 10.1007/s11705-016-1584-0

    39. [39]

      Priya, D. B.; Asharani, I. V. J. Clust. Sci. 2017, 28, 1837.  doi: 10.1007/s10876-017-1185-1

    40. [40]

      Chakraborty, I.; Pradeep, T. Chem. Rev. 2017, 117, 8208.  doi: 10.1021/acs.chemrev.6b00769

    41. [41]

      Majdalawieh, A.; Kanan, M. C.; El-Kadri, O.; Kanan, S. M. J. Nanosci. Nanotechnol. 2014, 14, 4757.  doi: 10.1166/jnn.2014.9526

    42. [42]

      Okumura, M.; Haruta, M.; Kitagawa, Y.; Yamaguchia, K. Gold Bull. 2007, 40, 40.  doi: 10.1007/BF03215291

    43. [43]

      Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chemistry 2008, 14, 8456.  doi: 10.1002/chem.v14:28

    44. [44]

      Tan, Z. Q.; Liu, J. F.; Yin, Y. G.; Shi, Q. T.; Jing, C. Y.; Jiang, G. B. ACS Appl. Mater. Inter. 2014, 6, 19833.  doi: 10.1021/am5052069

    45. [45]

      Xiu, Z. M.; Ma, J.; Alvarez, P. J. J. Environ. Sci. Technol. 2011, 45, 9003.  doi: 10.1021/es201918f

    46. [46]

      Xu, H. Y.; Qu, F.; Xu, H.; Lai, W. H.; Wang, Y. A.; Aguilar, Z. P.; Wei, H. Biometals 2012, 25, 45.  doi: 10.1007/s10534-011-9482-x

    47. [47]

      He, D.; Dorantes-Aranda, J. J; Waite, T. D. Environ. Sci. Technol. 2012, 46, 8731.  doi: 10.1021/es300588a

    48. [48]

      Bryaskova, R.; Pencheva, D.; Nikolov, S.; Kantardjiev, T. J. Chem. Biol. 2011, 4, 185.  doi: 10.1007/s12154-011-0063-9

    49. [49]

      Masscheleyn, P. H.; Delaune, R. D.; Patrick, W. H. Environ. Sci. Technol. 1991, 25, 1414.  doi: 10.1021/es00020a008

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    5. [5]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    14. [14]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    17. [17]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    18. [18]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

Metrics
  • PDF Downloads(17)
  • Abstract views(1071)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return