Citation: Guo Xiaoru, Yin Yongguang, Tan Zhiqiang, Liu Jingfu, Jiang Guibin. Catalytic Oxidation of Arsenic in Water by Silver Nanoparticles[J]. Acta Chimica Sinica, ;2018, 76(5): 387-392. doi: 10.6023/A18020067 shu

Catalytic Oxidation of Arsenic in Water by Silver Nanoparticles

  • Corresponding author: Liu Jingfu, jfliu@rcees.ac.cn
  • Received Date: 9 February 2018
    Available Online: 26 May 2018

    Fund Project: the National Natural Science Foundation of China 21337004the National Natural Science Foundation of China 21620102008the National Key R & D Program of China 2016YFA0203102Project supported by the National Key R & D Program of China (No. 2016YFA0203102), and the National Natural Science Foundation of China (Nos. 21337004, 21620102008)

Figures(6)

  • With the development of nanoscience and nanotechnology, nanomaterials have been applied in many areas including environments. Silver nanoparticles (AgNPs) are being widely used in drinking water disinfection due to their excellent bactericidal performance. As the bactericide, AgNPs could minimize or eliminate bacteria exceeding standards and water treatment membrane fouling. Arsenic contamination, especially in the underground water, has gained great attention from the environmental science community, demanding effective methods to eliminate or remove more acutely toxic inorganic species[i.e., As(Ⅲ) and As(Ⅴ)]. Given the good photocatalytic activity, AgNPs could have an impact on the transformaiton of As(Ⅲ) and As(Ⅴ). In this study, high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometer (HPLC-ICP/MS) were used to investigate the effects of some environmental relative factors like pH, natural organic matter, cation ions (e.g., Ca2+), and the intrinsic properties of AgNPs like size and coatings, on the conversion of the two main inorganic arsenic[As(Ⅲ) and As(Ⅴ)] in the aqueous solution in the presence of AgNPs. It was found that AgNPs showed no physical adsorption for As(Ⅲ), while resulted in significant catalytic oxidation of As(Ⅲ) into As(Ⅴ). Moreover, environmental factors including pH, sunlight, NOM, Ca2+, and properties of AgNPs (e.g., size, coating) showed significant effects on the catalytic oxidation of As(Ⅲ). The catalytic oxidation was also confirmed in the real environmental waters. Finally, the catalytic ability of AuNPs and AgNPs were compared to unveil the mechanism of catalytic oxidation of As(Ⅲ) by AgNPs. In addition to oxidation of superoxo or peroxo species formed due to activation of molecular oxygen by the electron transfer from negatively charged AgNPs, the redox potential of silver (φΘAg+/Ag0=0.80 V) mostly contributed to the transformation of As(Ⅲ) into As(Ⅴ). Therefore, given the coexisting of As(Ⅲ) and AgNPs in the water treatment system, AgNPs could play dual function in both sterilization and detoxification of As(Ⅲ), which paved the novel way to effectively treat As contamination.
  • 加载中
    1. [1]

      http://www.nanotechproject.org/cpi (accessed Feb 20, 2017).

    2. [2]

      Cao, X. L.; Tang, M.; Liu, F.; Nie, Y. Y.; Zhao, C. S. Colloid Surface B 2010, 8, 555.
       

    3. [3]

      Fendorf, S.; Michael, H. A.; Van Geen, A. Science 2010, 328, 1123.  doi: 10.1126/science.1172974

    4. [4]

      Yu, G. Q.; Sun, D. J.; Zheng, Y. Environ. Health Persp. 2007, 115, 636.  doi: 10.1289/ehp.9268

    5. [5]

      Berg, M.; Tran, H. C.; Nguyen, T. C.; Pham, H. V.; Schertenleib, R.; Giger, W. Environ. Sci. Technol. 2001, 35, 2621.  doi: 10.1021/es010027y

    6. [6]

      Karn, S. K. Environ. Pollut. 2015, 207, 434.  doi: 10.1016/j.envpol.2015.05.005

    7. [7]

      He, J.; Charlet, L. J. Hydrol. 2013, 492, 79.  doi: 10.1016/j.jhydrol.2013.04.007

    8. [8]

      Clancy, T. M.; Hayes, K. F.; Raskin, L. Environ. Sci. Technol. 2013, 47, 10799.  doi: 10.1021/es401749b

    9. [9]

      Smedley, P. L.; Kinniburgh, D. G. Appl. Geochem. 2002, 17, 517.  doi: 10.1016/S0883-2927(02)00018-5

    10. [10]

      Sadee, B.; Foulkes, M. E.; Hill, S. J. J. Anal. At. Spectrom. 2015, 30, 102.  doi: 10.1039/C4JA00269E

    11. [11]

      Kumar, A. R.; Riyazuddin, P. Trends Anal. Chem. 2010, 29, 1212.  doi: 10.1016/j.trac.2010.07.009

    12. [12]

      Yang, K.; Xing, B. S. Chem. Rev. 2010, 110, 5989.  doi: 10.1021/cr100059s

    13. [13]

      Tan, K. B.; Vakili, M.; Hord, B. A.; Poh, P. E.; Abdullah, A. Z.; Salamatinia, B. Sep. Purif. Technol. 2015, 150, 229.  doi: 10.1016/j.seppur.2015.07.009

    14. [14]

      Pena, M. E.; Korfiatis, G. P.; Patel, M.; Lippincott, L.; Meng, X. G. Water Res. 2005, 39, 2327.  doi: 10.1016/j.watres.2005.04.006

    15. [15]

      Hu, S.; Shi, Q. T.; Jing, C. Y. Environ. Sci. Technol. 2015, 49, 9707.  doi: 10.1021/acs.est.5b01520

    16. [16]

      Kanel, S. R.; Greneche, J. M.; Choi, H. Environ. Sci. Technol. 2006, 40, 2045.  doi: 10.1021/es0520924

    17. [17]

      Gibert, O.; de Pablo, J.; Cortina, J. L.; Ayora, C. Environ. Geochem. Hlth. 2010, 32, 373.  doi: 10.1007/s10653-010-9290-1

    18. [18]

      Xia, X. F.; Hua, Y. L.; Huang, X. Y.; Ling, L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 594.
       

    19. [19]

      Huang, X. Y.; Wang, W.; Ling L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 529.
       

    20. [20]

      Xi, B. D.; Wang, X. W.; Liu, W. J.; Xia, X. F.; Li, D. S.; He, L. S.; Wang, H. M.; Sun, W. J.; Yang, T. X.; Tao, W. Sep. Sci. Technol. 2014, 49, 2642.  doi: 10.1080/01496395.2014.939761

    21. [21]

      Holt, B. D.; Heraty, L. J.; Sturchio, N. C. Environ. Pollut. 2001, 113, 263.  doi: 10.1016/S0269-7491(00)00191-3

    22. [22]

      Palau, J.; Jamin, P.; Badin, A.; Vanhecke, N.; Haerens, B.; Brouyere, S.; Hunkeler, D. Water Res. 2016, 92, 235.  doi: 10.1016/j.watres.2016.01.057

    23. [23]

      Rittmann, B. E.; Stilwell, D.; Garside, J. C.; Amy, G. L.; Spangenberg, C.; Kalinsky, A.; Akiyoshi, E. Water Res. 2002, 36, 3387.  doi: 10.1016/S0043-1354(02)00033-7

    24. [24]

      Mascolo, G.; Ciannarella, R.; Balest, L.; Lopez, A. J. Hazard. Mater. 2008, 152, 1138.  doi: 10.1016/j.jhazmat.2007.07.120

    25. [25]

      Jeong, C. H.; Postigo, C.; Richardson, S. D.; Simmons, J. E.; Kimura, S. Y.; Marinas, B. J.; Barcelo, D.; Liang, P.; Wagner, E. D.; Plewa, M. J. Environ. Sci. Technol. 2015, 49, 13749.  doi: 10.1021/es506358x

    26. [26]

      Yates, M. V.; Malley, J.; Rochelle, P.; Hoffman, R. J. Am. Water Works Ass. 2006, 98, 93.
       

    27. [27]

      Mecha, C. A.; Pillay, V. L. J. Membrane Sci. 2014, 458, 149.  doi: 10.1016/j.memsci.2014.02.001

    28. [28]

      Liga, M. V.; Bryant, E. L.; Colvin, V. L.; Li, Q. L. Water Res. 2011, 45, 535.  doi: 10.1016/j.watres.2010.09.012

    29. [29]

      Muthu, K.; Priya, S. Spectrochim. Acta A 2017, 179, 66.  doi: 10.1016/j.saa.2017.02.024

    30. [30]

      Baruah, B.; Gabriel, G. J.; Akbashev, M. J.; Booher, M. E. Langmuir 2013, 29, 4225.  doi: 10.1021/la305068p

    31. [31]

      Joseph, S.; Mathew, B. J. Mol. Liq. 2015, 204, 184.  doi: 10.1016/j.molliq.2015.01.027

    32. [32]

      Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Chem.-Asian. J. 2006, 1, 888.  doi: 10.1002/(ISSN)1861-471X

    33. [33]

      Morallon, E.; Arias-Pardilla, J.; Calo, J. M.; Cazorla-Amoros, D. Electrochim. Acta 2009, 54, 3996.  doi: 10.1016/j.electacta.2009.02.023

    34. [34]

      Yu, S. J.; Yin, Y. G.; Liu, J. F. Environ. Sci. Proc. Impacts. 2013, 15, 78.  doi: 10.1039/C2EM30595J

    35. [35]

      Levard, C.; Hotze, E. M.; Lowry, G. V.; Brown, G. E. Environ. Sci. Technol. 2012, 46, 6900.  doi: 10.1021/es2037405

    36. [36]

      Yin, Y. G.; Liu, J. F.; Jiang, G. B. ACS Nano 2012, 6, 7910.  doi: 10.1021/nn302293r

    37. [37]

      Kloster, N.; Brigante, M.; Zanini, G.; Avena, M. Colloid. Surface. A 2013, 427, 76.  doi: 10.1016/j.colsurfa.2013.03.030

    38. [38]

      Wang, J.; Liu, J. J.; Guo, X. H.; Yan, L.; Lincoln, S. F. Front. Chem. Sci. Eng. 2016, 10, 432.  doi: 10.1007/s11705-016-1584-0

    39. [39]

      Priya, D. B.; Asharani, I. V. J. Clust. Sci. 2017, 28, 1837.  doi: 10.1007/s10876-017-1185-1

    40. [40]

      Chakraborty, I.; Pradeep, T. Chem. Rev. 2017, 117, 8208.  doi: 10.1021/acs.chemrev.6b00769

    41. [41]

      Majdalawieh, A.; Kanan, M. C.; El-Kadri, O.; Kanan, S. M. J. Nanosci. Nanotechnol. 2014, 14, 4757.  doi: 10.1166/jnn.2014.9526

    42. [42]

      Okumura, M.; Haruta, M.; Kitagawa, Y.; Yamaguchia, K. Gold Bull. 2007, 40, 40.  doi: 10.1007/BF03215291

    43. [43]

      Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chemistry 2008, 14, 8456.  doi: 10.1002/chem.v14:28

    44. [44]

      Tan, Z. Q.; Liu, J. F.; Yin, Y. G.; Shi, Q. T.; Jing, C. Y.; Jiang, G. B. ACS Appl. Mater. Inter. 2014, 6, 19833.  doi: 10.1021/am5052069

    45. [45]

      Xiu, Z. M.; Ma, J.; Alvarez, P. J. J. Environ. Sci. Technol. 2011, 45, 9003.  doi: 10.1021/es201918f

    46. [46]

      Xu, H. Y.; Qu, F.; Xu, H.; Lai, W. H.; Wang, Y. A.; Aguilar, Z. P.; Wei, H. Biometals 2012, 25, 45.  doi: 10.1007/s10534-011-9482-x

    47. [47]

      He, D.; Dorantes-Aranda, J. J; Waite, T. D. Environ. Sci. Technol. 2012, 46, 8731.  doi: 10.1021/es300588a

    48. [48]

      Bryaskova, R.; Pencheva, D.; Nikolov, S.; Kantardjiev, T. J. Chem. Biol. 2011, 4, 185.  doi: 10.1007/s12154-011-0063-9

    49. [49]

      Masscheleyn, P. H.; Delaune, R. D.; Patrick, W. H. Environ. Sci. Technol. 1991, 25, 1414.  doi: 10.1021/es00020a008

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    3. [3]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    4. [4]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(17)
  • Abstract views(965)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return