Citation: Xu Jie, Wei Yuchen, Wu Zhiwei, Yi Zhongsheng. Spectral and Computational Simulations of HSA and BDE154 Based on Acidity Induction[J]. Acta Chimica Sinica, ;2018, 76(5): 408-414. doi: 10.6023/A18020060 shu

Spectral and Computational Simulations of HSA and BDE154 Based on Acidity Induction

  • Corresponding author: Yi Zhongsheng, yzs@glut.edu.cn
  • Received Date: 6 February 2018
    Available Online: 11 May 2018

    Fund Project: the National Natural Science Foundation of China 21565012the National Natural Science Foundation of China 21467006the Guangxi Natural Science Foundation of China 2017GXNSFAA198354Project supported by the National Natural Science Foundation of China (Nos. 21467006 and 21565012) and the Guangxi Natural Science Foundation of China (2017GXNSFAA198354)

Figures(4)

  • In this paper, human serum albumin (HSA) binding to small molecule 2, 2', 4, 4', 5, 6'-hexabromodiphenyl ether (BDE154) is studied by means of inducing protonation or deprotonation at four different pH levels (pH=3.0, 6.0, 7.4, 9.0). Firstly, it has been indicated that the charge distribution on HSA is very uniform even after protonation of HSA at different pH levels. From this, it can be inferred that the uniform charge distribution makes the electrostatic forces between the amino acid residues of the ⅡA region of HSA aspartic acid (Asp), glutamate (Glu) and histidine (His) to gradually reach a relative equilibrium and thus stabilize the HSA conformation. The results from synchronous fluorescence spectroscopy show that BDE154 has been bind to the ⅡA region of HSA, and is more closely to tryptophan (Try), and that causes the fluorescence quenching of HSA. After that, the semi-flexible docking of HSA with BDE 154 reveals that BDE154 has a cationic-π-conjugated effect and strong hydrophobic interaction with the surrounding amino acids, such as tyrosine 150 (Tyr150), lysine 195 (Lys195), lysine 199 (Lys199), etc. Next, the dynamic and thermodynamic properties of HSA under different protonation conditions have been studied by using molecular dynamic simulation. The results of simulation also show that too much positive charge deteriorates the system stability of HSA or HSA-BDE154 complex. Then, the binding free energy of HSA-BDE154 complex under different protonation states has been predicted by MM-PBSA method, and the contribution of amino acid residues to free energy of binding has also been analyzed. In addition, lysine 199 (Lys199), leucine 238 (Leu238), arginine 257 (Arg257), alanine 261 (Ala261), and isoleucine 264 (Ile264) in the HSA, being located in the hydrophobic cavity in subdomain ⅡA, are the most important residues when binding with BDE154. Therefore, the hydrophobic interaction has been identified as the major driving force for the binding between HSA-BDE154 systems, which is consistent with the results of molecular docking and the analysis of binding free energy. Finally, the results of secondary structure analysis of molecular dynamics simulation show that the binding could promote the de-helix process of HSA by increasing the acidity in HSA-BDE154 complex system.
  • 加载中
    1. [1]

      Allard, J. F.; Dushek, O.; Coombs, D.; Van Der Merwe; P. A. Biophys. J. 2012, 102, 1265.  doi: 10.1016/j.bpj.2012.02.006

    2. [2]

      Rich, R. L.; Hoth, L. R.; Geoghegan, K. F.; Brown, T. A.; LeMotte, P. K.; Simons, S. P.; Hensley, P.; Myszka, D. G. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 8562.  doi: 10.1073/pnas.142288199

    3. [3]

      Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Kotzyba-Hibert, F.; Lehn, J. M.; Prodi, L. J. Am. Chem. Soc. 1994, 116, 5741.  doi: 10.1021/ja00092a026

    4. [4]

      Agasti, S. S.; Liong, M.; Tassa, C.; Chung, H. J.; Shaw, S. Y.; Lee, H.; Weissleder, R. Angew. Chem. Int. Ed. 2012, 51, 450.  doi: 10.1002/anie.201105670

    5. [5]

      Gellman, S. H. Chem. Rev. 1997, 97, 1231.  doi: 10.1021/cr970328j

    6. [6]

      Berde, C. B.; Hudson, B. S.; Simoni, R. D.; Sklar, L. A. J. Biol. Chem. 1979, 254, 391.
       

    7. [7]

      Schneider, H. J.; Yatsimirsky, A. K. Chem. Soc. Rev. 2008, 37, 263.  doi: 10.1039/B612543N

    8. [8]

      Pal, B.; Bajpai, P. K.; Baul, T. B. Spectrochim. Acta A 2000, 56, 2453.  doi: 10.1016/S1386-1425(00)00320-6

    9. [9]

      Lyon, C. E.; Suh, E. S.; Dobson, C. M.; Hore, P. J. J. Am. Chem. Soc. 2002, 124, 13018.  doi: 10.1021/ja020141w

    10. [10]

      Cheng, L. T.; Wang, Z.; Setny, P.; Dzubiella, J.; Li, B.; McCammon, J. A. J. Chem. Phys. 2009, 131, 144102.  doi: 10.1063/1.3242274

    11. [11]

      Ma, M.; Paredes, A., Bong, D. J. Am. Chem. Soc. 2008, 130, 14456.  doi: 10.1021/ja806954u

    12. [12]

      Bader, A. N.; van Dongen, M. M.; van Lipzig, M. M.; Kool, J.; Meerman, J. H.; Ariese, F.; Gooijer, C. Chem. Res. Toxicol. 2005, 18, 1405.  doi: 10.1021/tx050056c

    13. [13]

      Colquhoun, H. M.; Zhu, Z.; Williams, D. J. Org. Lett. 2003, 5, 4353.  doi: 10.1021/ol035626j

    14. [14]

      Branco, T. J. F.; Ferreira, L. V.; do Rego, A. B.; Oliveira, A. S.; Da Silva, J. P. Photochem. Photobiol. Sci. 2006, 5, 1068.  doi: 10.1039/B608833C

    15. [15]

      Baudry, R.; Kalchenko, O.; Dumazet-Bonnamour, I.; Vocanson, F.; Lamartine, R. J. Chromatogr. Sci. 2003, 41, 157.  doi: 10.1093/chromsci/41.3.157

    16. [16]

      Xiao, Z.-Y.; Lin, R.-L.; Tao, Z.; Liu, Q.-Y.; Liu, J.-X.; Xiao, X. Org. Chem. Front. 2017, 4, 2422.  doi: 10.1039/C7QO00708F

    17. [17]

      Baudoin, O.; Gonnet, F.; Teulade-Fichou, M. P.; Vigneron, J. P.; Tabet, J. C., Lehn, J. M. Chem. Eur. J. 1999, 5, 2762.  doi: 10.1002/(ISSN)1521-3765

    18. [18]

      Kukić, P.; Nielsen; J. E. Future Med. Chem. 2010, 2, 647.  doi: 10.4155/fmc.10.6

    19. [19]

      Jakoby IV, M. G.; Miller, K. R.; Toner, J. J.; Bauman, A.; Cheng, L.; Li, E.; Cistola, D. P. Biochemistry 1993, 32, 872.  doi: 10.1021/bi00054a019

    20. [20]

      Quan, X.; Dong, J.; Zhou, J. Acta Chim. Sinica 2014, 72, 1075.  doi: 10.7503/cjcu20140006
       

    21. [21]

      Li, L.; Lü, M.; Lu, K.; Liu, G.; Peng, L. Chin. J. Org. Chem. 2018, 38, 246.
       

    22. [22]

      Linderstrøm-Lang, K. C. R. Trav. Lab. Carlsberg 1924, 15, 1.
       

    23. [23]

      Shishkov, I. F.; Khristenko, L. V.; Rudakov, F. M.; Vilkov, L. V.; Karlov, S. S.; Zaitseva, G. S.; Samdal, S. J. Mol. Struct. 2002, 641, 199.  doi: 10.1016/S0022-2860(02)00339-3

    24. [24]

      Bhattacharya, B.; Nakka, S.; Guruprasad, L.; Samanta, A. J. Phys. Chem. B 2009, 113, 2143.  doi: 10.1021/jp808611b

    25. [25]

      Jang, H.; Hall, C. K.; Zhou, Y. Biophys. J. 2002, 83, 819.  doi: 10.1016/S0006-3495(02)75211-9

    26. [26]

      de Oliveira, C. A. F.; Guimarães, C. R. W.; Barreiro, G.; de Alencastro, R. B. Proteins 2003, 52, 483.  doi: 10.1002/prot.10403

    27. [27]

      Bolel, P.; Datta, S.; Mahapatra, N.; Halder, M. J. Phys. Chem. B 2014, 118, 26.  doi: 10.1021/jp407057f

    28. [28]

      Baler, K.; Martin, O. A.; Carignano, M. A.; Ameer, G. A.; Vila, J. A.; Szleifer, I. J. Phys. Chem. B 2014, 118, 921.  doi: 10.1021/jp409936v

    29. [29]

      Meyer, B.; Peters, T. Angew. Chem. Int. Ed. 2003, 42, 864.  doi: 10.1002/anie.200390233

    30. [30]

      Karplus, M.; McCammon, J. A. Nat. Struct. Biol. 2002, 9, 646.  doi: 10.1038/nsb0902-646

    31. [31]

      Zhang, Y.; Wu, S.; Qin, Y.; Liu, J.; Liu, J.; Wang, Q.; Ren, F.; Zhang, H. Food Chem. 2018, 240, 1072.  doi: 10.1016/j.foodchem.2017.07.100

    32. [32]

      De Wit, C. A. Chemosphere 2002, 46, 583.  doi: 10.1016/S0045-6535(01)00225-9

    33. [33]

      Zhao, N.; Xuan, S.; Fronczek, F. R.; Smith, K. M.; Vicente, M. G. J. Org. Chem. 2017, 82, 3880.  doi: 10.1021/acs.joc.6b02981

    34. [34]

      Balamurugan, R.; Stalin, A.; Ignacimuthu, S. Eur. J. Med. Chem. 2012, 47, 38.  doi: 10.1016/j.ejmech.2011.10.007

    35. [35]

      Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A. Nucleic Acids Res. 2007, 35, 522.  doi: 10.1093/nar/gkm276

    36. [36]

      Li, Y.; Liu, X.; Dong, X.; Zhang, L.; Sun, Y. Langmuir 2014, 30, 8500.  doi: 10.1021/la5017438

    37. [37]

      Aliev, A. E.; Kulke, M.; Khaneja, H. S.; Chudasama, V.; Sheppard, T. D.; Lanigan, R. M. Proteins:Structure, Function, and Bioinformatics 2014, 82, 195-215.  doi: 10.1002/prot.24350

    38. [38]

      Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.  doi: 10.1063/1.464397

    39. [39]

      Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. J. Comput. Phys. 1977, 23, 327.  doi: 10.1016/0021-9991(77)90098-5

    40. [40]

      Sudhamalla, B.; Gokara, M.; Ahalawat, N.; Amooru, D. G.; Subramanyam, R. J. Phys. Chem. B 2010, 114, 9054.  doi: 10.1021/jp102730p

    41. [41]

      Baler, K.; Martin, O. A.; Carignano, M. A.; Ameer, G. A.; Vila, J. A.; Szleifer, I. J. Phys. Chem. B 2014, 118, 921.  doi: 10.1021/jp409936v

    42. [42]

      Jiang, Q.; Zhang, Z.; Liu, Y.; Yao, N.; Wang, J. Chin. J. Org. Chem. 2017, 37, 1814.
       

    43. [43]

      Lu, Z.; Qi, L.; Li, G.-X.; Li, Q.; Sun, G.-H.; Xie, R.-Z. J. Solution Chem. 2014, 43, 2010.  doi: 10.1007/s10953-014-0256-2

    44. [44]

      Rehman, M. T.; Shamsi, H.; Khan, A. U. Mol. Pharm. 2014, 11, 1785.  doi: 10.1021/mp500116c

    45. [45]

      Rahman, T.; Rahmatullah, M. Bioorg. Med. Chem. Lett. 2010, 20, 537.  doi: 10.1016/j.bmcl.2009.11.106

    46. [46]

      Dong, K.; Yang, X.; Zhao, T.; Zhu, X. Mol. Simulat. 2017, 43, 599.  doi: 10.1080/08927022.2017.1279283

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    18. [18]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    19. [19]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    20. [20]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

Metrics
  • PDF Downloads(18)
  • Abstract views(1608)
  • HTML views(301)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return