Citation: Huang Pei-Qiang. Direct Transformations of Amides: Tactics and Recent Progress[J]. Acta Chimica Sinica, ;2018, 76(5): 357-365. doi: 10.6023/A18020054 shu

Direct Transformations of Amides: Tactics and Recent Progress

  • Corresponding author: Huang Pei-Qiang, pqhuang@xmu.edu.cn
  • Received Date: 2 February 2018
    Available Online: 12 May 2018

    Fund Project: the National Natural Science Foundation of China 21472153the National Natural Science Foundation of China 21332007the National Natural Science Foundation of China 21672176the National Key R & D Program of China 2017YFA0207302Chinese Universities Scientific Fund 20720170092Project supported by the National Key R & D Program of China (grant No. 2017YFA0207302), the National Natural Science Foundation of China (Nos. 21332007, 21472153, 21672176), the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education (P. R. China), and Chinese Universities Scientific Fund (No. 20720170092)

Figures(12)

  • Amides are a class of easily available compounds, and widely serve as versatile intermediates in organic synthesis and medicinal chemistry. Amide-based transformations could lead to many useful compounds and intermediates including various amines, ketones and enaminones. Though direct transformation of amides is of high demand, many current chemoselective transformations are only achieved in multistep approaches. In recent years, direct transformation of amides is emerging as an exciting area. A number of recent progresses on nucleophilic addition to amide carbonyl group that led to new C—C bond formation are highlighted in this review, including (1) in situ amide activation with trifluoromethanesulfonic anhydride (Tf2O) followed by addition of π- and σ-nucleophiles or reactive organometallic reagents; (2) direct transformation of N-alkoxyamides; (3) direct transformation of amides using Schwartz reagent; and (4) catalytic reductive C—C bond forming reactions of amides, and metal catalyzed coupling of amides.
  • 加载中
    1. [1]

      Brown, R. S. In The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science, Eds. : Greenberg, A. ; Breneman, C. M. ; Liebman, J. F., John Wiley & Sons, Hoboken, 2000, pp. 85~114.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Seyden-Penne, J. Reductions by the Alumino-and Borohydrides in Organic Synthesis, 2nd ed., Wiley-VCH, New York, 1997.

    6. [6]

      Li, J. ; Zhang, W. H. ; Zhang, F. ; Chen, Y. ; Li, A. J. Am. Chem. Soc. 2017, 139, 14893. correction: J. Am. Chem. Soc. 2018, 140, 2384.

    7. [7]

      (a) Mateo, P. ; Cinqualbre, J. ; Mojzes, M. M. ; Schenk, K. ; Renaud, P. J. Org. Chem. 2017, 82, 12318. See also: (b) Murai, T. ; Mutoh, Y. ; Ohta, Y. ; Murakami, M. J. Am. Chem. Soc. 2004, 126, 5968. For a review, see: (c) Murai, T. ; Mutoh, Y. Chem. Lett. 2012, 41, 2.

    8. [8]

      (a) Abels, F. ; Lindemann, C. ; Koch, E. ; Schneider, C. Org. Lett. 2012, 14, 5972. (b) Abels, F. ; Lindemann, C. ; Schneider, C. Chem. -Eur. J. 2014, 20, 1964.

    9. [9]

      Lee, A. S.; Liau, B. B.; Shair, M. D. J. Am. Chem. Soc. 2014, 136, 13442.  doi: 10.1021/ja507740u

    10. [10]

      Michael, J. P.; de Koning, C. B.; Gravestock, D.; Hosken, G. D.; Howard, A. S.; Jungmann, C. M.; Krause, R. W. M.; Parsons, A. S.; Pelly, S. C.; Stanbury, T. V. Pure Appl. Chem. 1999, 71, 979.  doi: 10.1351/pac199971060979

    11. [11]

      Hussaini, S. R.; Chamala, R. R.; Wang, Z. Tetrahedron 2015, 71, 6017.  doi: 10.1016/j.tet.2015.06.026

    12. [12]

    13. [13]

      (a) Stang, P. J. ; White, M. R. Aldrichim. Acta 1983, 16, 15. (b) Baraznenok, I. L. ; Nenajdenko, V. G. ; Balenkova, E. S. Tetrahedron 2000, 56, 3077. For an excellent mechanistic investigation on the role of base additive in conjuction with Tf2O, see: (c) Mátravö lgyi, B. ; Hergert, T. ; Bálint, E. ; Bagi, P. ; Faigl, F. J. Org. Chem. 2018, 83, 2282.

    14. [14]

      (a) Falmagne, J. B. ; Escudero, J. ; Talebsahraoui, S. ; Ghosez, L. Angew. Chem. Int. Ed. Engl. 1981, 20, 879. (b) Chen, L. Y. ; Ghosez, L. Tetrahedron Lett. 1990, 31, 4467.

    15. [15]

      Martinez, A. G.; Alvarez, R. M.; Barcina, J. O.; Cerero, S. M.; Vilar, E. T.; Fraile, A. G.; Hanack, M.; Subramanian, L. R. J. Chem. Soc., Chem. Commun. 1990, 1571.
       

    16. [16]

      Sisti, N. J.; Fowler, F. W.; Grierson, D. S. Synlett 1991, 816.
       

    17. [17]

      Banwell, M. G.; Cowden, C. J.; Gable, R. W. J. Chem. Soc., Perkin Trans. 1 1994, 3515.
       

    18. [18]

      Myers, A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J. J. Am. Chem. Soc. 1997, 119, 6072.  doi: 10.1021/ja9703741

    19. [19]

      (a) Magnus, P. ; Gazzard, L. ; Hobson, L. ; Payne, A. H. ; Lynch, V. Tetrahedron Lett. 1999, 40, 5135. (b) Magnus, P. ; Gazzard, L. ; Hobson, L. ; Payne, A. H. ; Rainey, T. J. ; Westlund, N. ; Lynch, V. Tetrahedron 2002, 58, 3423.

    20. [20]

      (a) Bélanger, G. ; Larouche-Gauthier, R. ; Ménard, F. ; Nantel, M. ; Barabé, F. Org. Lett. 2005, 7, 4431. (b) Bélanger, G. ; Larouche-Gauthier, R. ; Ménard, F. ; Nantel, M. ; Barabé, F. J. Org. Chem. 2006, 71, 704.

    21. [21]

      (a) Movassaghi, M. ; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592. (b) Movassaghi, M. ; Hill, M. D. ; Ahmad, O. K. J. Am. Chem. Soc. 2007, 129, 10096.

    22. [22]

      Hendrickson, J. B.; Hussoin, M. D. J. Org. Chem. 1987, 52, 4137.  doi: 10.1021/jo00227a041

    23. [23]

      (a) You, S. L. ; Razavi, H. ; Kelly, J. W. Angew. Chem., Int. Ed. 2003, 42, 83; (b) You, S. -L. ; Kelly, J. W. Org. Lett. 2004, 6, 1681.

    24. [24]

      (a) Zhou, H. B. ; Liu, G. S. ; Yao, Z. J. Org. Lett. 2007, 9, 2003. (b) Atia, M. ; Bogdán, D. ; Brügger, M. ; Haider, N. ; Mátyus, P. Tetrahedron 2017, 73, 3231. (c) Dong, Q. L. ; Liu, G. S. ; Zhou, H. B. ; Chen, L. ; Yao, Z. J. Tetrahedron Lett. 2008, 49, 1636.

    25. [25]

      Movassaghi, M.; Hill, M. D. Org. Lett. 2008, 10, 3485.  doi: 10.1021/ol801264u

    26. [26]

      Cui, S. L.; Wang, J.; Wang, Y. G. J. Am. Chem. Soc. 2008, 130, 13526.  doi: 10.1021/ja805706r

    27. [27]

      Medley, J. W.; Movassaghi, M. J. Org. Chem. 2009, 74, 1341.  doi: 10.1021/jo802355d

    28. [28]

      (a) White, K. L. ; Mewald, M. ; Movassaghi, M. J. Org. Chem. 2015, 80, 7403. (b) Mewald, M. ; Medley, J. W. ; Movassaghi, M. Angew. Chem., Int. Ed. 2014, 53, 11634.

    29. [29]

      (a) Handbook of Grignard Reagents, Eds. : Silverman, G. S. ; Rakita, P. E., Marcel Dekker, New York, 1996; (b) Grignard Reagent: New Developments, Ed. : Richey, H. G. Jr., Wiley, Chichester, 2000; (c) Main Group Metals in Organic Synthesis, Eds. : Yamamoto, H. ; Oshima, K., Wiley-VCH, Weinheim, 2004; (d) Handbook of Functionalized Organometallics Application in Synthesis, Ed. : Knochel, P., Wiley-VCH, Weinheim, 2005; (e) Klatt, T. ; Markiewicz, J. T. ; Sä mann, C. ; Knochel, P. J. Org. Chem. 2014, 79, 4253; (f) Bao, R. L. -Y. ; Zhao, R. ; Shi, L. Chem. Commun. 2015, 51, 6884, correction: Chem. Commun. 2015, 51, 9744.

    30. [30]

      (a) Foubelo, F. ; Yus, M. Chem. Soc. Rev. 2008, 37, 2620; (b) Chinchilla, R. ; Nájera, C. ; Yus, M. Tetrahedron 2005, 61, 3139; (c) The Chemistry of Organolithium Compounds, Eds. : Rappoport, Z. ; Marek, I., Wiley-VCH, Weinheim, 2004.

    31. [31]

      (a) Xiao, K. -J. ; Luo, J. -M. ; Ye, K. -Y. ; Wang, Y. ; Huang, P. -Q. Angew. Chem., Int. Ed. 2010, 49, 3037. (b) Huo, H. -H. ; Luo, J. -M. ; Xia, X. -E. ; Zhang, H. -K. ; Wang, Y. ; Huang, P. -Q. Chem. Eur. J. 2013, 19, 13075.

    32. [32]

      (a) Xiao, K. -J. ; Wang, Y. ; Ye, K. -Y. ; Huang, P. -Q. Chem. Eur. J. 2010, 16, 12792. (b) Xiao, K. -J. ; Wang, Y. ; Huang, Y. -H. ; Wang, X. -G. ; Huang, P. -Q. J. Org. Chem. 2013, 78, 8305.

    33. [33]

      (a) Guérot, C. ; Tchitchanov, B. H. ; Knust, H. ; Carreira, E. M. Org. Lett. 2011, 13, 780. (b) Lindemann, C. ; Schneider, C. Synthesis 2016, 48, 828.

    34. [34]

      (a) Huo, H. -H. ; Xia, X. -E. ; Zhang, H. -K. ; Huang, P. -Q. J. Org. Chem. 2013, 78, 455. (b) Huang, P. -Q. ; Geng, H. ; Tian, Y. -S. ; Peng, Q. -R. ; Xiao, K. -J. Sci. China: Chem. 2015, 58, 478.

    35. [35]

      Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.  doi: 10.1038/nchem.1268

    36. [36]

      (a) Xiao, K. -J. ; Wang, A. -E; Huang, Y. -H. ; Huang, P. -Q. Asian J. Org. Chem. 2012, 1, 130. (b) Huang, P. -Q. ; Huang, Y. -H. ; Geng, H. ; Ye, J. -L. Sci. Rep. 2016, 6, 28801. (c) Huang, P. -Q. ; Huang, Y. -H. Chin. J. Chem. 2017, 35, 613.

    37. [37]

      Xiao, K.-J.; Wang, A.-E; Huang, P.-Q. Angew. Chem. Int. Ed. 2012, 51, 8314.  doi: 10.1002/anie.v51.33

    38. [38]

      Huang, P.-Q.; Ou, W.; Xiao, K.-J.; Wang, A.-E Chem. Commun. 2014, 50, 8761.  doi: 10.1039/C4CC03826F

    39. [39]

      Huang, P.-Q.; Wang, Y.; Xiao, K.-J.; Huang, Y.-H. Tetrahedron 2015, 71, 4248.  doi: 10.1016/j.tet.2015.04.074

    40. [40]

      (a) Castoldi, L. ; Holzer, W. ; Langer, T. ; Pace, V. Chem. Commun. 2017, 53, 9498. (b) Pace, V. ; Murgia, I. ; Westermayer, S. ; Langer, T. ; Holzer, W. Chem. Commun. 2016, 52, 7584.

    41. [41]

      (a) Shirokane, K. ; Kurosaki, Y. ; Sato, T. ; Chida, N. Angew. Chem. Int. Ed. 2010, 49, 6369. (b) Yoritate, M. ; Meguro, T. ; Matsuo, N. ; Shirokane, K. ; Kurosaki, Y. ; Sato, T. ; Chida, N. Chem. Eur. J. 2014, 20, 8210. See also: (c) Jaekel, M. ; Qu, J. ; Schnitzer, T. ; Helmchen, G. Chem. Eur. J. 2013, 19, 16746.

    42. [42]

      (a) Vincent, G. ; Guillot, R. ; Kouklovsky, C. Angew. Chem. Int. Ed. 2011, 50, 1350. (b) Vincent, G. ; Karila, D. ; Khalil, G. ; Sancibrao, P. ; Gori, D. ; Kouklovsky, C. Chem. -Eur. J. 2013, 19, 9358.

    43. [43]

      (a) Schedler, D. J. A. ; Godfrey, A. G. ; Ganem, B. Tetrahedron Lett. 1993, 34, 5035. (b) Schedler, D. J. A. ; Li, J. ; Ganem, B. J. Org. Chem. 1996, 61, 4115. (c) Xia, Q. ; Ganem, B. Org. Lett. 2001, 3, 485.

    44. [44]

      (a) Nakajima, M. ; Oda, Y. ; Wada, T. ; Minamikawa, R. ; Shirokane, K. ; Sato, T. ; Chida, N. Chem. Eur. J. 2014, 20, 17565. (b) Oda, Y. ; Sato, T. ; Chida, N. Org. Lett. 2012, 14, 950. (c) Shirokane, K. ; Wada, T. ; Yoritate, M. ; Minamikawa, R. ; Takayama, N. ; Sato, T. ; Chida, N. Angew. Chem. Int. Ed. 2014, 53, 512. (d) Fukami, Y. ; Wada, T. ; Meguro, T. ; Chida, N. ; Sato, T. Org. Biomol. Chem. 2016, 14, 5486. (e) Shirokane, K. ; Tanaka, Y. ; Yoritate, M. ; Takayama, N. Sato, T. ; Chida, N. Bull. Chem. Soc. Jpn. 2015, 88, 522. See also: (f) Pace, V. ; Vega-Hernández, K. de la; Urban, E. ; Langer, T. Org. Lett. 2016, 18, 2750.

    45. [45]

      Więcław, M. M.; Stecko, S. Eur. J. Org. Chem. 2018, DOI:10.1002/ejoc.201701537  doi: 10.1002/ejoc.201701537

    46. [46]

      Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Chem. Commun. 2009, 1574.
       

    47. [47]

      (a) Gregory, A. W. ; Chambers, A. ; Hawkins, P. ; Jakubec, A. ; Dixon, D. J. Chem. -Eur. J. 2015, 21, 111. (b) Tan, P. W. ; Seayad, J. ; Dixon, D. J. Angew. Chem. Int. Ed. 2016, 55, 13436.

    48. [48]

      (a) Nakajima, M. ; Sato, T. ; Chida, N. Org. Lett. 2015, 17, 1696. (b) Katahara, S. ; Kobayashi, S. ; Fujita, K. ; Matsumoto, T. ; Sato, T. ; Chida, N. J. Am. Chem. Soc. 2016, 138, 5246. (c) Katahara, S. ; Kobayashi, S. ; Fujita, K. ; Matsumoto, T. ; Sato, T. ; Chida, N. Bull. Chem. Soc. Jpn. 2017, 90, 893.

    49. [49]

      Huang, P.-Q.; Ou, W.; Han, F. Chem. Commun. 2016, 52, 11967.  doi: 10.1039/C6CC05318A

    50. [50]

      (a) Fuentes de Arriba, A. L. ; Lenci, E. ; Sonawane, M. ; Formery, O. ; Dixon, D. J. Angew. Chem. Int. Ed. 2017, 56, 3655. (b) Xie, L. G. ; Dixon, D. J. Chem. Sci. 2017, 8, 7492.

    51. [51]

      (a) Tinnis, F. ; Volkov, A. ; Slagbrand, T. ; Adolfsson, H. Angew. Chem., Int. Ed. 2016, 55, 4562. (b) Slagbrand, T. ; Kervefors, G. ; Tinnis. F. ; Adolfsson, H. Adv. Synth. Catal. 2017, 359, 1990. (c) Trillo, P. ; Slagbrand, T. ; Tinnis F. ; Adolfsson, H. Chem. Commun. 2017, 53, 9159.

    52. [52]

      Hie, L.; Fine Nathel, N. F.; Shah, T.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79.  doi: 10.1038/nature14615

    53. [53]

      Ritter, S. K. Chem. Eng. News 2015, 93(49), 23.
       

    54. [54]

      (a) Ritter, S. K. Chem. Eng. News Archive 2015, 93(30), 9. (b) Ruider, S. A. ; Maulide, N. Angew. Chem. Int. Ed. 2015, 54, 13856.

    55. [55]

      Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75.  doi: 10.1038/nchem.2388

    56. [56]

      Meng, G.; Szostak, R.; Szostak, M. Org. Lett. 2017, 19, 3596.  doi: 10.1021/acs.orglett.7b01575

    57. [57]

      Huang, P.-Q.; Chen, H. Chem. Commun. 2017, 53, 12584.  doi: 10.1039/C7CC07457C

    58. [58]

      (a) Kaiser, D. ; Teskey, C. J. ; Adler, P. ; Maulide, N. J. Am. Chem. Soc. 2017, 139, 16040. (b) Shaaban, S. ; Tona, V. ; Peng, B. ; Maulide, N. Angew. Chem. Int. Ed. 2017, 56, 10938. (c) Torre, A. ; Kaiser, D. ; Maulide, N. J. Am. Chem. Soc. 2017, 139, 6578. (d) Kaiser, D. ; de la Torre, A. ; Shaaban, S. ; Maulide, N. Angew. Chem., Int. Ed. 2017, 56, 5921. (e) Mauro, G. D. ; Maryasin, B. ; Kaiser, D. ; Shaaban, S. ; González, L. ; Maulide, N. Org. Lett. 2017, 19, 3815. (f) Tona, V. ; Maryasin, B. ; de la Torre, A. ; Sprachmann, J. ; González, L. ; Maulide, N. Org. Lett. 2017, 19, 2662. (g) Gawali, V. S. ; Simeonov, S. ; Drescher, M. ; Knott, T. ; Scheel, O. ; Kudolo, J. ; Kä hlig, H. ; Hochenegg, K. ; Hochenegg, U. ; Roller, A. ; Todt, H. ; Maulide, N. ChemMedChem 2017, 12, 1819. (h) Peng, B. ; Geerdink, D. ; Fares, C. ; Maulide, N. Angew. Chem. Int. Ed. 2014, 53, 5462.

    59. [59]

      (a) Xiao, P. H. ; Tang, Z. X. ; Wang, K. ; Chen, H. ; Guo, Q. Y. ; Chu, Y. ; Gao, L. ; Song, Z. L. J. Org. Chem. 2018, 83, 1687. (b) Li, L. H. ; Niu, Z. J. ; Liang, Y. M. Chem. Eur. J. 2017, 23, 15300. (c) Li, X. W. ; Lin, F. G. R. ; Huang, K. M. ; Wei, J. L. ; Li, X. Y. ; Wang, X. Y. ; Geng, X. Y. ; Jiao, N. Angew. Chem. Int. Ed. 2017, 56, 12307. (d) Xie, C. M. ; Luo, J. S. ; Zhang, Y. ; Zhu, L. L. ; Hong, R. Org. Lett. 2017, 19, 3592. (e) Chen, J. J. ; Long, W. H. ; Fang, S. W. ; Yang, Y. G. ; Wan, X. B. Chem. Commun. 2017, 53, 13256. (f) Ding, G. N. ; Wu, X. Y. ; Jiang, L. L. ; Zhang, Z. G. ; Xie, X. M. Org. Lett. 2017, 19, 6048. (g) Zhang, Q. ; Yuan, J. W. ; Yu, M. F. ; Zhang, R. ; Liang, Y. J. ; Huang, P. ; Dong, D. W. Synthesis 2017, 49, 4996. (h) Jiang Meng, J. ; Jia, R. ; Leng, J. ; Wen, M. ; Yu, X. ; Deng, W. -P. Org. Lett. 2017, 19, 4520. (i) Shi, L. ; Tan, X. ; Long, J. ; Xiong, X. ; Yang, S. ; Xue, P. ; Lv, H. ; Zhang, X. Chem. -Eur. J. 2017, 23, 546. (j) Yuan, M. L. ; Xie, J. H. ; Zhou, Q. L. ChemCatChem 2016, 8, 3036. (k) Yuan, M. L. ; Xie, J. H. ; Zhu, S. F. ; Zhou, Q. L. ACS Catal. 2016, 6, 3665. (l) Xing, S. Y. ; Ren, J. ; Wang, K. ; Cui, H. ; Xia, T. ; Zhang, M. ; Wang, D. D. Adv. Synth. Catal. 2016, 358, 3093. (m) Lang, Q. -W. ; Hu, X. -N. ; Huang, P. -Q. Sci. China: Chem. 2016, 59, 1638. (n) Mou, X. Q. ; Xu, L. ; Wang, S. H. ; Yang, C. Tetrahedron Lett. 2015, 56, 2820. (o) Zhang, T. X. ; Zhang, Y. ; Zhang, W. X. ; Luo, M. -M. Adv. Synth. Catal. 2013, 355, 2775. (p) Xie, W. ; Zhao, M. ; Cui, C. Organometallics 2013, 32, 7440. (q) Zhao, M. N. ; Ren, Z. H. ; Wang, Y. Y. ; Guan, Z. H. Chem. Commun. 2012, 48, 8105.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    4. [4]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    5. [5]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    8. [8]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    11. [11]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    12. [12]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    13. [13]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    17. [17]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(196)
  • Abstract views(4630)
  • HTML views(1555)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return