Citation: Yan Tingting, Xing Guolong, Ben Teng. One-step Strategy to Synthesize Porous Carbons by Carbonized Porous Organic Materials and Their Applications[J]. Acta Chimica Sinica, ;2018, 76(5): 366-376. doi: 10.6023/A18020050 shu

One-step Strategy to Synthesize Porous Carbons by Carbonized Porous Organic Materials and Their Applications

  • Corresponding author: Ben Teng, tben@jlu.edu.cn
  • Received Date: 1 February 2018
    Available Online: 9 May 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21390394, 21471065) and the "111" project (No. B07016)the National Natural Science Foundation of China 21471065the National Natural Science Foundation of China 21390394the "111" project B07016

Figures(10)

  • It is an effective way to solve the problems of environmental pollution and energy shortage by exploring and utilizing clean, renewable energy. Porous carbons which prepared by carbonized porous organic materials with high carbon content, have high specific surface area, good physical and chemical stability, and excellent mechanical performance, generally higher conductivity, therefore can be widely used in many fields, such as clean energy storage, different gases separation, and energy storage and conversion, etc. The common methods for preparing porous carbon from porous organic materials are divided into non-activated carbonization and activation carbonization. The morphology and pore structure of porous carbons which prepared by different preparation methods are different. The structure properties of porous carbon materials can affect their application. Reasonable design and utilization of the "pore" of porous carbon, displaying "sieving effect" of pore size can effectively store and separate the gas molecules. In the field of energy storage and conversion, such as lithium battery, the "confinement effect" is an important factor that affects the electrical performance of lithium battery. The smaller pores in the porous carbon materials can limited the active components, while the larger pores are in favor of rapidly diffusion, the synergistic effect of the two different type pores can greatly improve the electrical performance of lithium battery. This review systematically summarize the preparation methods of porous carbons derived from porous organic materials, and a brief comparison of different methods for preparing porous carbon is presented which proved that carbonized porous organic materials is a simple, efficient, environmentally friendly, and controllable pore structure method for the preparation of porous carbon with excellent performance. Then, the review describes in detail about the application of porous carbons in gas adsorption, storage, separation, energy storage and conversion. At the last, combination with the research status of porous carbons, the review points out the challenges for porous carbons, and also prospects the application of porous carbons.
  • 加载中
    1. [1]

      Liu, T. Y.; Zhang, F.; Song, Y.; Li, Y. J. Mater. Chem. A 2017, 5, 17705.  doi: 10.1039/C7TA05646J

    2. [2]

      Xia, Y. D.; Yang, Z. X.; Zhu, Y. Q. J. Mater. Chem. A 2013, 1, 9365.  doi: 10.1039/c3ta10583k

    3. [3]

      Kyotani, T. Carbon 2000, 38, 269.  doi: 10.1016/S0008-6223(99)00142-6

    4. [4]

      Yang, Y. F.; Jin, S.; Zhang, Z.; Du, Z. Z.; Liu, H. R.; Yang, J.; Xu, H. X.; Ji, H. X. ACS Appl. Mater. Interfaces 2017, 9, 14180.  doi: 10.1021/acsami.6b14840

    5. [5]

      Yang, K.; Jiang, P.; Chen, J. T.; Chen, Q. W. ACS Appl. Mater. Interfaces 2017, 9, 32106.  doi: 10.1021/acsami.7b09428

    6. [6]

      Dutta, S.; Bhaumik, A.; Wu, K. C. W. Energy Environ. Sci. 2014, 7, 3574.  doi: 10.1039/C4EE01075B

    7. [7]

      Jiang, M.; Zhang, J. L.; Xing, L. B.; Zhou, J.; Cui, H. Y.; Si, W. J.; Zhuo, S. P. Chin. J. Chem. 2016, 34, 1093.  doi: 10.1002/cjoc.v34.11

    8. [8]

      Hong, S. M.; Choi, S. W.; Kim, S. H.; Lee, K. B. Carbon 2016, 99, 354.  doi: 10.1016/j.carbon.2015.12.012

    9. [9]

      Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2008, 130, 5390.  doi: 10.1021/ja7106146

    10. [10]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841.
       

    11. [11]

      Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113.  doi: 10.3969/j.issn.0253-2409.2016.01.016
       

    12. [12]

      Pei, X. K.; Chen, Y. F.; Li, S. Q.; Zhang, S. H.; Feng, X.; Zhou, J. W.; Wang, B. Chin. J. Chem. 2016, 34, 157.  doi: 10.1002/cjoc.v34.2

    13. [13]

      Lu, S. L.; Jin, Y. H.; Gu, H. W.; Zhang, W. Sci. China. Chem. 2017, 60, 999.  doi: 10.1007/s11426-017-9078-7

    14. [14]

      Sun, J. K.; Xu, Q. Energy Environ. Sci. 2014, 7, 2071.  doi: 10.1039/c4ee00517a

    15. [15]

      Wood, C. D.; Tan, B. E.; Trewin, A.; Niu, H. J.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stöckel, E.; Cooper, A. I. Chem. Mater. 2007, 19, 2034.  doi: 10.1021/cm070356a

    16. [16]

      Wood, C. D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M. J.; Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A. I. Adv. Mater. 2008, 20, 1916.  doi: 10.1002/(ISSN)1521-4095

    17. [17]

      McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.  doi: 10.1039/b600349d

    18. [18]

      McKeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall, C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D. Chem. Eur. J. 2005, 11, 2610.  doi: 10.1002/(ISSN)1521-3765

    19. [19]

      Côté, A. P.; Benin, A. I.; Ockwing, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    20. [20]

      Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 4570.  doi: 10.1021/ja8096256

    21. [21]

      Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem. Int. Ed. 2007, 46, 8574.  doi: 10.1002/anie.v46:45

    22. [22]

      Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Niu, H.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I. J. Am. Chem. Soc. 2008, 130, 8875.
       

    23. [23]

      Xu, J. W.; Zhang, C.; Wang, X. C.; Jiang, J. X.; Wang, F. Acta Chim. Sinica 2017, 75, 473.
       

    24. [24]

      Kuhn, P.; Thomas, A.; Antonietti, M. Macromolecules 2009, 42, 319.  doi: 10.1021/ma802322j

    25. [25]

      Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2008, 47, 3450.  doi: 10.1002/(ISSN)1521-3773

    26. [26]

      Ben, T.; Pei, C. Y.; Zhang, D. L.; Xu, J.; Deng, F.; Jing, X. F.; Qiu, S. L. Energy Environ. Sci. 2011, 4, 3991.  doi: 10.1039/c1ee01222c

    27. [27]

      Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F. Angew. Chem. Int. Ed. 2009, 48, 9457.  doi: 10.1002/anie.200904637

    28. [28]

      Yan, Z. J.; Yuan, Y.; Liu, J.; Li, Q.; Nguyen, N. T.; Zhang, D. M.; Tian, Y. Y.; Zhu, G. S. Acta Chim. Sinica 2016, 74, 67.
       

    29. [29]

      Allcock, H. R.; Siegel, L. A. J. Am. Chem. Soc. 1964, 86, 5140.  doi: 10.1021/ja01077a019

    30. [30]

      Sozzani, P.; Comotti, A.; Simonutti, R.; Meersmann, T.; Logan, J. W.; Pines, A. Angew. Chem. Int. Ed. 2000, 112, 2807.  doi: 10.1002/(ISSN)1521-3757

    31. [31]

      Mastalerz, M.; Oppel, I. M. Angew. Chem. Int. Ed. 2012, 51, 5252.  doi: 10.1002/anie.201201174

    32. [32]

      Tozawa1, T.; Jones, J. T. A.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y.; Tang, C.; Thompson, S.; Parker, J.; Trewin, A.; Bacsa, J.; Slawin, A. M. Z.; Steiner, A.; Cooper, A. I. Nature Mater. 2009, 8, 973.  doi: 10.1038/nmat2545

    33. [33]

      Chen, L. J.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.; Little, M. A.; Kewley, A.; Briggs, M. E.; Stephenson, A.; Thomas, K. M.; Armstrong, J. A.; Bell, J.; Busto, J.; Noel, R.; Liu, J.; Strachan, D. M.; Thallapally, P. K.; Cooper, A. I. Nature Mater. 2014, 13, 954.  doi: 10.1038/nmat4035

    34. [34]

      Giri, N.; Del Pópolo, M. G.; Melaugh, G.; Greenaway, R.; R tzke, K.; Koschine, T.; Pison, L.; Costa Gomes, M. F.; Cooper, A. I.; James, S. L. Nature 2015, 527, 216.  doi: 10.1038/nature16072

    35. [35]

      Ben, T.; Li, Y. Q.; Zhu, L. K.; Zhang, D. L.; Cao, D. P.; Xiang, Z. H.; Yao, X. D.; Qiu, S. L. Energy Environ. Sci. 2012, 5, 8370.  doi: 10.1039/c2ee21935b

    36. [36]

      Li, Y. Q.; Ben, T.; Qiu, S. L. Acta Chim. Sinica 2015, 73, 605.
       

    37. [37]

      Zhang, Y. M.; Li, B. Y.; Williams, K.; Gao, W. Y.; Ma, S. Q. Chem. Commun. 2013, 49, 10269.  doi: 10.1039/c3cc45252b

    38. [38]

      Pachfule, P.; Dhavale, V. M.; Kandambeth, S.; Kurungot, S.; Banerjee, R. Chem. Eur. J. 2013, 19, 974.  doi: 10.1002/chem.201202940

    39. [39]

      Li, Y. Q.; Ben, T.; Zhang, B. Y.; Fu, Y.; Qiu, S. L. Sci. Rep. 2013, 3, 2420.  doi: 10.1038/srep02420

    40. [40]

      Li, Y. Q.; Roy, S.; Ben, T.; Xu, S. X.; Qiu, S. L. Phys. Chem. Chem. Phys. 2014, 16, 12909.  doi: 10.1039/c4cp00550c

    41. [41]

      Dong, Y.; Das, S.; Zhu, L. K.; Ben, T.; Qiu, S. L. J. Mater. Chem. A 2016, 4, 18822.  doi: 10.1039/C6TA09384A

    42. [42]

    43. [43]

      Zhao, W. X.; Han, S.; Zhuang, X. D.; Zhang, F.; Mai, Y. Y.; Feng, X. L. J. Mater. Chem. A 2015, 3, 23352.  doi: 10.1039/C5TA06702B

    44. [44]

      Ashourirad, B.; Sekizkardes, A. K.; Altarawneh, S.; El-Kaderi, H. M. Chem. Mater. 2015, 27, 1349.  doi: 10.1021/cm504435m

    45. [45]

      Yang, X.; Yu, M.; Zhao, Y.; Zhang, C.; Wang, X. Y.; Jiang, J. X. J. Mater. Chem. A 2014, 2, 15139.  doi: 10.1039/C4TA02782E

    46. [46]

      Kou, J. H.; Sun, L. B. J. Mater. Chem. A 2016, 4, 17299.  doi: 10.1039/C6TA07305K

    47. [47]

      Xu, Y. J.; Wu, S. P.; Ren, S. J.; Ji, J. Y.; Yu, Y.; Shen, J. J. RSC Adv. 2017, 7, 32496.  doi: 10.1039/C7RA05551J

    48. [48]

      Gu, S.; He, J. Q.; Zhu, Y. L.; Wang, Z. Q.; Chen, D. Y.; Yu, G. P.; Pan, C. Y.; Guan, J. G.; Tao, K. ACS Appl. Mater. Interfaces 2016, 8, 18383.  doi: 10.1021/acsami.6b05170

    49. [49]

      Alabadi, A.; Abbood, H. A.; Li, Q. Y.; Jing, N.; Tan, B. E. Sci. Rep. 2016, 6, 38614.  doi: 10.1038/srep38614

    50. [50]

      Huang, Y. B.; Pachfule, P.; Sun, J. K.; Xu, Q. J. Mater. Chem. A 2016, 4, 4273.  doi: 10.1039/C5TA10170K

    51. [51]

      Puthiaraj, P.; Ahn, W. S. J. Energ. Chem. 2017, 26, 965.  doi: 10.1016/j.jechem.2017.07.012

    52. [52]

      Lee, Y. J.; Talapaneni, S. N.; Coskun, A. ACS Appl. Mater. Interfaces 2017, 9, 30679.  doi: 10.1021/acsami.7b08930

    53. [53]

      Tian, Z. H.; Huang, J. J.; Zhang, X.; Shao, G. L.; He, Q. Y.; Cao, S. K.; Yuan, S. G. Microporous Mesoporous Mater. 2018, 257, 19.  doi: 10.1016/j.micromeso.2017.08.012

    54. [54]

      Lee, J. S. M.; Briggs, M. E.; Hasell, T.; Cooper, A. I. Adv. Mater. 2016, 28, 9804.  doi: 10.1002/adma.201603051

    55. [55]

      Wang, X. Y.; Mu, P.; Zhang, C.; Chen, Y.; Zeng, J. H.; Wang, F.; Jiang, J. X. ACS Appl. Mater. Interfaces 2017, 9, 20779.  doi: 10.1021/acsami.7b05345

    56. [56]

      Feng, X. L.; Liang, Y. Y.; Zhi, L. J.; Thomas, A.; Wu, D. Q.; Lieberwirth, I.; Kolb, U.; Müllen, K. Adv. Funct. Mater. 2009, 19, 2125.  doi: 10.1002/adfm.v19:13

    57. [57]

      Liang, Y. Y.; Feng, X. L.; Zhi, L. J.; Kolb, U.; Müllen, K. Chem. Commun. 2009, 809.
       

    58. [58]

      Hao, L.; Luo, B.; Li, X. L.; Jin, M. H.; Fang, Y.; Tang, Z. H.; Jia, Y. Y.; Liang, M. H.; Thomas, A.; Yang, J. H.; Zhi, L. J. Energy Environ. Sci. 2012, 5, 9747.  doi: 10.1039/c2ee22814a

    59. [59]

      Liu, X. H.; Zhou, L.; Zhao, Y. Q.; Bian, L.; Feng, X. T.; Pu, Q. S. ACS Appl. Mater. Interfaces 2013, 5, 10280.  doi: 10.1021/am403175q

    60. [60]

      Kim, G. Y.; Yang, J.; Nakashima, N.; Shiraki, T. Chem. Eur. J. 2017, 23, 17504.  doi: 10.1002/chem.v23.69

    61. [61]

      Zha, W. L.; Tu, W. L.; Li, Y.; Gao, H. Y.; Yu, J. G.; Zhao, Y. N.; Li, G. D. Electrochim. Acta 2016, 219, 143.  doi: 10.1016/j.electacta.2016.09.133

    62. [62]

      Xiang, Z. H.; Cao, D. P.; Huang, L.; Shui, J. L.; Wang, M.; Dai, L. M. Adv. Mater. 2014, 26, 3315.  doi: 10.1002/adma.v26.20

    63. [63]

      Fan, X. H.; Kong, F. T.; Kong, A. G.; Chen, A. L.; Zhou, Z. Q.; Shan, Y. K. ACS Appl. Mater. Interfaces 2017, 9, 32840.  doi: 10.1021/acsami.7b11229

    64. [64]

      Liao, Y. Z.; Cheng, Z. H.; Zuo, W. W.; Thomas, A.; Faul, C. F. J. ACS Appl. Mater. Interfaces 2017, 9, 38390.  doi: 10.1021/acsami.7b09553

    65. [65]

      Liao, Y. Z.; Weber, J.; Mills, B. M.; Ren, Z. H.; Faul, C. F. J. Macromolecules 2016, 49, 6322.  doi: 10.1021/acs.macromol.6b00901

    66. [66]

      Wang, H. G.; Cheng, Z. H.; Liao, Y. Z.; Li, J. H.; Weber, J.; Thomas, A.; Faul, C. F. J. Chem. Mater. 2017, 29, 4885.  doi: 10.1021/acs.chemmater.7b00857

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    10. [10]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    11. [11]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(80)
  • Abstract views(4228)
  • HTML views(1384)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return