Citation: Xi Zifan, Yuan Fanglong, Wang Zifei, Li Shuhua, Fan Louzhen. Highly Efficient and Stable Full-Color Random Lasing Emission Based on Carbon Quantum Dots[J]. Acta Chimica Sinica, ;2018, 76(6): 460-466. doi: 10.6023/A18020048 shu

Highly Efficient and Stable Full-Color Random Lasing Emission Based on Carbon Quantum Dots

  • Corresponding author: Fan Louzhen, lzfan@bnu.edu.cn
  • Received Date: 1 February 2018
    Available Online: 8 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Key program, No. 21233003; General Program, No. 21573019), and the Fundamental Research Funds for the Central Universities

Figures(7)

  • The emerging fluorescent carbon quantum dots (CQDs) have shown enormous potentials in optoelectronic applications owing to their outstanding characteristics, such as tunable stable fluorescence emission, low cost, and environment-friendliness. However, the fluorescence of most reported CQDs is dominated by surface defects, which are in general energy dissipative, hard to support lasing emission. We have previously reported the bandgap emission CQDs from blue to red with a quantum yield (QY) over 50%, which is the highest value reported for bandgap emission CQDs. The bandgap transitions in CQDs were further confirmed by size-dependent optical properties through tansmission electron microscopy (TEM), which show uniform distribution nanoparticles with averge sizes of about 1.95, 2.41, 5.0 nm for blue, green and red CQDs, and their typical high-resolution TEM (HRTEM) images further indicates that most of the CQDs exhibit uniform atomic arrangements with high degree of crystallinity. By taking advantage of the high QY of CQDs, monochrome CQDs-based random lasing with low excitation threshold have been realized by using Au-Ag bimetallic porous nanowires as scatterers for the first time. The Au-Ag bimetallic porous nanowires possess a rough surface with Au nanoparticles and abundant nanogaps, leading to the extremely broadband surface plasmonic resonance peaks over the whole visible spectral range, which is benefit for efficient random lasing. The thresholds of the monochrome CQDs-based random lasers reached about 0.27, 0.21, 0.58 MW/cm2 for blue, green and red, respectively. The full width at half maximum (FWHM) of the monochrome CQDs-based random lasers reached about 2.5, 1.9, 2.3 nm for blue, green and red, which is even comparable to the well-developed semiconductor QDs-based random lasers. The obtained random lasers show substantial stable emission color, which is of great significance for lasing display and lighting technology. Furthermore, white lasing with a CIE coordinate at (0.32, 0.33) was first demonstrated by combining red, green, blue fluorescent CQDs. This work does serve the purpose of understanding and providing significant opportunities for further improvements of CQDs-based lasers.
  • 加载中
    1. [1]

      Hill, M. T.; Gather, M. C. Nat. Photonics 2014, 8, 908.  doi: 10.1038/nphoton.2014.239

    2. [2]

      Luan, F.; Gu, B.; Gomes, A. S. L; Yong, K. T.; Wen, S. C.; Prasad, P. N. Nano Today 2015, 10, 168.  doi: 10.1016/j.nantod.2015.02.006

    3. [3]

      Wiersma, D. Nat. Phys. 2008, 4, 359.  doi: 10.1038/nphys971

    4. [4]

      Wiersma, D. Nature 2000, 406, 132.
       

    5. [5]

      Wang, Y.; Duan, Z. J.; Qiu, Z.; Zhang, P.; Wu, J. W.; Zhang, D. K.; Xiang, T. X. Sci. Rep. 2017, 7, 8385.  doi: 10.1038/s41598-017-08625-3

    6. [6]

      Polson, R. C.; Vardeny, Z. V. Appl. Phys. Lett. 2004, 85, 1289.  doi: 10.1063/1.1782259

    7. [7]

      Fan, F.; Turkdogan, S.; Liu, Z. C.; Shelhammer, D.; Ning, C. Z. Nat. Nanotechnol. 2015, 10, 796.  doi: 10.1038/nnano.2015.149

    8. [8]

      Liu, Z. C.; Yin, L. J.; Ning, H.; Yang, Z. Y.; Tong, L. M.; Ning, C. Z. Nano Lett. 2013, 13, 4945.  doi: 10.1021/nl4029686

    9. [9]

      Lu, Y. J.; Wang, C. Y.; Kim, J.; Chen, H. Y.; Lu, M. Y.; Chen, Y. C.; Chang, W. H.; Chen, L. J.; Stockman, M. I.; Shih, C. K.; Gwo, S. Nano Lett. 2014, 14, 4381.  doi: 10.1021/nl501273u

    10. [10]

      Cai, P.; Jia, Y.; Feng, X. Y.; Li, J.; Li, J. B. Chin. J. Chem. 2017, 35, 881.  doi: 10.1002/cjoc.v35.6

    11. [11]

      Huang, L. ; Li, Z. C. ; Huang, S. Q. ; Reiss, P. ; Li, L. Acta Chim. Sinica 2017, 75, 300(in Chinese).

    12. [12]

      Shao, Y. B.; Yue, J. L.; Sun, S.; Xia, H. Chin. J. Chem. 2017, 35, 73.  doi: 10.1002/cjoc.v35.1

    13. [13]

      Li, C. L.; Zang, Z. G.; Han, C.; H, Z. P.; Tang, X. S.; Du, J.; Leng, Y. X.; Sun, K. Nano Energy 2017, 40, 195.  doi: 10.1016/j.nanoen.2017.08.013

    14. [14]

      Li, Y. J; Lv, Y. C.; Zou, C. M.; Zhang, W.; Yao, J. N.; Zhao, Y. S. J. Am. Chem. Soc. 2016, 138, 2122.  doi: 10.1021/jacs.5b12755

    15. [15]

      Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. Z.; Mathews, N.; Mhaisalkar, S. G. Adv. Mater. 2016, 28, 6804.  doi: 10.1002/adma.201600669

    16. [16]

      Rauter, P.; Capasso, F. Laser Photonics Rev. 2015, 11, 565.
       

    17. [17]

      Li, T. F.; Li, Y. W.; Xiao, L.; Yu, H. T.; Fan, L. Z. Acta Chim. Sinica 2014, 72, 227(in Chinese).  doi: 10.3866/PKU.WHXB201312161
       

    18. [18]

      Du, F. K.; Xu, J. S.; Zeng, F.; Wu, S, Z. Acta Chim. Sinica 2016, 74, 241(in Chinese).
       

    19. [19]

      Li, S. H.; Zhou, S. X.; Li, Y. C.; Li, X. H.; Zhu, J.; Fan, L. Z.; Yang, S. H. ACS Appl. Mater. Interfaces 2017, 9, 22332.  doi: 10.1021/acsami.7b07267

    20. [20]

      Liu, Y. T.; Zhou, S. X.; Fan, L. Z.; Fan, H. Microchim. Acta 2016, 183, 2605.  doi: 10.1007/s00604-016-1909-1

    21. [21]

      Xie, R. B.; Wang, Z. F.; Yu, H. T.; Fan, Z. T.; Yuan, F. L.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Fan, H. Electrochim. Acta 2016, 201, 220.  doi: 10.1016/j.electacta.2016.03.198

    22. [22]

      Guo, R. H.; Zhou, S. X.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Voelcker, N. H. ACS Appl. Mater. Interfaces 2015, 7, 23958.  doi: 10.1021/acsami.5b06523

    23. [23]

      Li, S. H.; Li, Y. C.; Gao, J.; Zhu, J.; Fan, L. Z.; Li, X. H. Anal. Chem. 2014, 86, 1021.
       

    24. [24]

      Fan, Z. T.; Zhou, S. X.; Garcia, C.; Fan, L. Z.; Zhou, J. B. Nanoscale 2017, 9, 4928.  doi: 10.1039/C7NR00888K

    25. [25]

      Yuan, F. L.; Ding, L.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Zhou, S. X.; Fang, D. C.; Yang, S. H. Nanoscale 2015, 7, 11727  doi: 10.1039/C5NR02007G

    26. [26]

      Fan, Z. T.; Li, S. H.; Yuan, F. L.; Fan, L. Z. RSC Adv. 2015, 5, 19773.  doi: 10.1039/C4RA17131D

    27. [27]

      Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Nano Today 2016, 11, 565.  doi: 10.1016/j.nantod.2016.08.006

    28. [28]

      Xie, R. B.; Wang, Z. F.; Liu, Y. T.; Fan, L. Z.; Li, Y. C.; Li, X. H.; Anal. Methods 2016, 8, 4001.  doi: 10.1039/C6AY00289G

    29. [29]

      Pan, L. L.; Sun, S.; Zhang, A. D.; Jiang, K.; Zhang, L.; Dong, C. Q.; Huang, Q.; Wu, A. G.; Lin, H. W. Anal. Methods 2012, 4, 58.  doi: 10.1039/C1AY05366C

    30. [30]

      Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Adv. Mater. 2017, 29, 1702910.  doi: 10.1002/adma.v29.37

    31. [31]

      Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Adv. Mater. 2017, 29, 1604436.  doi: 10.1002/adma.v29.3

    32. [32]

      Xie, W. J.; Fu, Y. Y.; Ma, H.; Zhang, M.; Fan, L. Z. Acta Chim. Sinica 2012, 70, 2169(in Chinese).
       

    33. [33]

      Zhang, M.; Bai, L. L.; Shang, W. H.; Xie, W. J.; Ma, H.; Fu, Y. Y.; Fang, D. C.; Sun, H.; Fan, L. Z.; Han, M.; Liu, C. M.; Yang, S. H. J. Mater. Chem. 2012, 22, 7461.  doi: 10.1039/c2jm16835a

    34. [34]

      Fan, Z. T.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Zhou, S. X.; Fang, D. C.; Yang, S. H. Carbon 2014, 70, 149.  doi: 10.1016/j.carbon.2013.12.085

    35. [35]

      Tan, X. Y.; Li, Y. C.; Li, X. H.; Zhou, S. X.; Yang, S. H. Chem. Commun. 2015, 51, 2544.  doi: 10.1039/C4CC09332A

    36. [36]

      Shi, X. Y.; Wang, Y. R.; Wang, Z. N.; Wei, S. J.; Sun, Y. Y.; Liu, D. H.; Zhou, J.; Zhang, Y. Y.; Shi, J. W. Adv. Optical Mater. 2014, 2, 88.  doi: 10.1002/adom.201300299

    37. [37]

      Chen, R.; Utama, M. I. B.; Peng, Z. P.; Peng, B.; Xiong, Q. H.; Sun, H. D. Adv. Mater. 2011, 23, 1404.  doi: 10.1002/adma.v23.11

  • 加载中
    1. [1]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    2. [2]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    3. [3]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    4. [4]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    5. [5]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    6. [6]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    7. [7]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    8. [8]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    11. [11]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    12. [12]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    13. [13]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    14. [14]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    15. [15]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    16. [16]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    17. [17]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

Metrics
  • PDF Downloads(37)
  • Abstract views(3233)
  • HTML views(758)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return