Citation: Xu Yi, Zhao Yan, Zhang Yejun, Cui Zhifen, Wang Lihua, Fan Chunhai, Gao Jimin, Sun Yanhong. Angiopep-2-conjugated Ag2S Quantum Dot for NIR-Ⅱ Imaging of Brain Tumors[J]. Acta Chimica Sinica, ;2018, 76(5): 393-399. doi: 10.6023/A18010039 shu

Angiopep-2-conjugated Ag2S Quantum Dot for NIR-Ⅱ Imaging of Brain Tumors

  • Corresponding author: Gao Jimin, jimingao64@163.com Sun Yanhong, sunyanhong@sinap.ac.cn
  • Received Date: 26 January 2018
    Available Online: 16 May 2018

    Fund Project: the National Natural Science Foundation of China 11575278the Ministry of Science and Technology of China 2016YFA0400902the National Natural Science Foundation of China 61378062the Ministry of Science and Technology of China 2016YFA0201200the National Natural Science Foundation of China 21675167the Key Research Program of Frontier Sciences QYZDJ-SSW-SLH031-02Project supported by the National Natural Science Foundation of China (Nos. 11575278, 21675167, 11675251, 61475181, 61378062), the Ministry of Science and Technology of China (Nos. 2016YFA0201200, 2016YFA0400902) and the Key Research Program of Frontier Sciences (No. QYZDJ-SSW-SLH031-02)the National Natural Science Foundation of China 11675251the National Natural Science Foundation of China 61475181

Figures(8)

  • Ag2S quantum dot with excellent NIR-Ⅱ fluorescence can provide deeper tissue penetration (>1.1 cm) and higher spatiotemporal resolution (25 μm, 50 ms) in comparison to the conventional fluorophore. In this study, we designed a NIR-Ⅱ probe based Ag2S quantum dot for imaging of brain tumor. Angiopep-2 was used to modify Ag2S quantum dot, which is a 19-mer peptide exhibiting high binding efficiency with low-density lipoprotein receptor-related protein-1 (LRP-1) of blood brain barrier and glioma. Due to the surface of Ag2S quantum dots with carboxyl groups and angiopep-2 peptide with amino groups, Ag2S was conjugated with Angiopep-2 (Ag2S-ANG) through the condensation reaction of amino and carboxyl groups mediated by EDC and NHS. The structure, size and spectral properties of Ag2S-ANG were characterized by agarose electrophoresis, dynamic light scattering transmission, electron microscope (TEM), UV-vis spectrometer and NIR fluorescence spectrometer, respectively. Results showed that Ag2S-ANG had a short migration distance compared with Ag2S in the agarose gel electrophoresis. The hydrate particle size of Ag2S was approximately 6 nm, Ag2S-ANG was approximately 8 nm and its zeta potential exhibited electropositive reinforcement, zeta potential of Ag2S is -11.47±1.56 mV and Ag2S-ANG is +28.7±1.35 mV. Ag2S-ANG exhibited similar absorbance and fluorescence spectra to Ag2S, except a slight enhancement of emission peak. These results indicated that Ag2S-ANG was synthesized successfully. We further observed its cell cytotoxicity, distribution and uptake in Uppsala 87 Malignant Glioma cells(U87MG), and in vivo distribution in the solid tumor-bearing mouse. Ag2S-ANG had no obvious cytotoxicity when the concentration is inferior to 100 μg/mL and had more uptake in U87MG cells than that of Ag2S. In animal experiments, glioma tumor-bearing mice were used to investigate the distribution and tumor targeting of Ag2S-ANG. Results showed that Ag2S-ANG can distribute and accumulate in subcutaneous tumor site, indicating that Ag2S-ANG had the potential of targeting the glioma cells.
  • 加载中
    1. [1]

      Abbott, N. J.; Patabendige, A. A.; Dolman, D. E.; Yusof, S. R.; Begley, D. J. Neurobiol. Dis. 2010, 37, 13.  doi: 10.1016/j.nbd.2009.07.030

    2. [2]

      Tajes, M.; Ramos-Fernandez, E.; Xian, W. J.; Bosch-Morato, M.; Guivernau, B.; Eraso-Pichot, A.; Salvador, B.; Fernandez-Busquets, X.; Roquer, J.; Munoz, F. J. Mol. Membr. Biol. 2014, 31, 152.  doi: 10.3109/09687688.2014.937468

    3. [3]

      Chen, Y.; Liu, L. Adv. Drug Delivery Rev. 2012, 64, 640.  doi: 10.1016/j.addr.2011.11.010

    4. [4]

      Patabendige, A.; Skinner, R. A.; Abbott, N. J. Brain Res. 2013, 1521, 1.  doi: 10.1016/j.brainres.2012.06.057

    5. [5]

      Pardridge, W. M. Nat. Rev. Drug Discovery 2002, 1, 131.  doi: 10.1038/nrd725

    6. [6]

      Jain, S.; Mishra, V.; Singh, P.; Dubey, P. K.; Saraf, D. K.; Vyas, S. P. Int. J. Pharm. 2003, 261, 43.  doi: 10.1016/S0378-5173(03)00269-2

    7. [7]

      Cui, Y.; Zhang, M.; Zeng, F.; Jin, H.; Xu, Q.; Huang, Y. ACS Appl. Mater. Interfaces 2016, 8, 32159.  doi: 10.1021/acsami.6b10175

    8. [8]

      Li, D.; Yang, K.; Li, J. S.; Ke, X. Y.; Duan, Y.; Du, R.; Song, P.; Yu, K. F.; Ren, W.; Huang, D.; Li, X. H.; Hu, X.; Zhang, X.; Zhang, Q. Int. J. Nanomed. 2012, 7, 6105.
       

    9. [9]

      Liu, H. L.; Hua, M. Y.; Yang, H. W.; Huang, C. Y.; Chu, P. C.; Wu, J. S.; Tseng, I. C.; Wang, J. J.; Yen, T. C.; Chen, P. Y.; Wei, K. C. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 15205.  doi: 10.1073/pnas.1003388107

    10. [10]

      Ge, Z.; Pei, H.; Wang, L.; Song, S.; Fan, C. Sci. China, Chem. 2011, 54, 1273.  doi: 10.1007/s11426-011-4327-6

    11. [11]

      Pei, H.; Liang, L.; Yao, G. B.; Li, J.; Huang, Q.; Fan, C. H. Angew. Chem., Int. Ed. 2012, 51, 9020.  doi: 10.1002/anie.201202356

    12. [12]

      Yang, F.; Zuo, X.; Li, Z.; Deng, W.; Shi, J.; Zhang, G.; Huang, Q.; Song, S.; Fan, C. Adv. Mater. 2014, 26, 4671.  doi: 10.1002/adma.v26.27

    13. [13]

      Yao, G.; Li, J.; Chao, J.; Pei, H.; Liu, H.; Zhao, Y.; Shi, J.; Huang, Q.; Wang, L.; Huang, W.; Fan, C. Angew. Chem., Int. Ed. Engl. 2015, 54, 2966.
       

    14. [14]

      Ye, D. K.; Zuo, X. L.; Fan, C. H. Prog. Chem. 2017, 29, 36.
       

    15. [15]

      Chen, P.; Pan, D.; Fan, C.; Chen, J.; Huang, K.; Wang, D.; Zhang, H.; Li, Y.; Feng, G.; Liang, P.; He, L.; Shi, Y. Nat. Nanotechnol. 2011, 6, 639.  doi: 10.1038/nnano.2011.141

    16. [16]

      Yan, H. H.; Wang, L.; Wang, J. Y.; Weng, X. F.; Lei, H.; Wang, X. X.; Jiang, L.; Zhu, J. H.; Lu, W. Y.; Wei, X. B.; Li, C. ACS Nano 2012, 6, 410.  doi: 10.1021/nn203749v

    17. [17]

      Bruun, J.; Larsen, T. B.; Jolck, R. I.; Eliasen, R.; Holm, R.; Gjetting, T.; Andresen, T. L. Int. J. Nanomed. 2015, 10, 5995.
       

    18. [18]

      Kumar, P.; Wu, H.; McBride, J. L.; Jung, K. E.; Kim, M. H.; Davidson, B. L.; Lee, S. K.; Shankar, P.; Manjunath, N. Nature 2007, 448, 39.  doi: 10.1038/nature05901

    19. [19]

      Li, J.; Feng, L.; Fan, L.; Zha, Y.; Guo, L.; Zhang, Q.; Chen, J.; Pang, Z.; Wang, Y.; Jiang, X.; Yang, V. C.; Wen, L. Biomaterials 2011, 32, 4943.  doi: 10.1016/j.biomaterials.2011.03.031

    20. [20]

      Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. J. Am. Chem. Soc. 2010, 132, 1470.  doi: 10.1021/ja909490r

    21. [21]

      Zhang, Y.; Zhang, Y.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biomaterials 2013, 34, 3639.  doi: 10.1016/j.biomaterials.2013.01.089

    22. [22]

      Zhang, Y.; Hong, G.; Zhang, Y.; Chen, G.; Li, F.; Dai, H.; Wang, Q. ACS Nano 2012, 6, 3695.  doi: 10.1021/nn301218z

    23. [23]

      Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotechnol. 2009, 4, 710.  doi: 10.1038/nnano.2009.326

    24. [24]

      Wang, J.; Wu, Y.; Sun, L.; Zeng, F.; Wu, S. Acta Chim. Sinica 2016, 74, 910.
       

    25. [25]

      Ji, G.; Yan, L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. Acta Chim. Sinica 2016, 74, 917.
       

    26. [26]

      Wei, Y.; Yang, X.; Ma, Y.; Wang, S.; Yuan, Q. Chin. J. Chem. 2016, 34, 558.  doi: 10.1002/cjoc.v34.6

    27. [27]

      Arshad, A.; Chen, H.; Bai, X.; Xu, S.; Wang, L. Chin. J. Chem. 2016, 34, 576.  doi: 10.1002/cjoc.v34.6

    28. [28]

      Gao, G.; Gong, D.; Zhang, M.; Sun, T. Acta Chim. Sinica 2016, 74, 363.
       

    29. [29]

      Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. Angew. Chem., Int. Ed. Engl. 2012, 51, 9818.  doi: 10.1002/anie.201206059

    30. [30]

      Li, C.; Li, F.; Zhang, Y.; Zhang, W.; Zhang, X. E.; Wang, Q. ACS Nano 2015, 9, 12255.  doi: 10.1021/acsnano.5b05503

    31. [31]

      Rault, I.; Frei, V.; Herbage, D.; AbdulMalak, N.; Huc, A. J. Mater. Sci.-Mater. Med. 1996, 7, 215.  doi: 10.1007/BF00119733

    32. [32]

      Demeule, M.; Regina, A.; Che, C.; Poirier, J.; Nguyen, T.; Gabathuler, R.; Castaigne, J. P.; Beliveau, R. J. Pharmacol. Exp. Ther. 2008, 324, 1064.
       

    33. [33]

      Demeule, M.; Currie, J. C.; Bertrand, Y.; Che, C.; Nguyen, T.; Regina, A.; Gabathuler, R.; Castaigne, J. P.; Beliveau, R. J. Neurochem. 2008, 106, 1534.  doi: 10.1111/jnc.2008.106.issue-4

    34. [34]

      Che, C.; Yang, G.; Thiot, C.; Lacoste, M. C.; Currie, J. C.; Demeule, M.; Regina, A.; Beliveau, R.; Castaigne, J. P. J. Med. Chem. 2010, 53, 2814.  doi: 10.1021/jm9016637

    35. [35]

      Sun, X.; Pang, Z.; Ye, H.; Qiu, B.; Guo, L.; Li, J.; Ren, J.; Qian, Y.; Zhang, Q.; Chen, J.; Jiang, X. Biomaterials 2012, 33, 916.
       

    36. [36]

      Gao, H.; Zhang, S.; Cao, S.; Yang, Z.; Pang, Z.; Jiang, X. Mol. Pharm. 2014, 11, 2755.
       

    37. [37]

      Huang, S.; Li, J.; Han, L.; Liu, S.; Ma, H.; Huang, R.; Jiang, C. Biomaterials 2011, 32, 6832.  doi: 10.1016/j.biomaterials.2011.05.064

    38. [38]

      Zuo, H.; Chen, W.; Cooper, H. M.; Xu, Z. P. ACS Appl. Mater. Interfaces 2017, 9, 20444.  doi: 10.1021/acsami.7b06421

    39. [39]

      Ren, J.; Shen, S.; Wang, D.; Xi, Z.; Guo, L.; Pang, Z.; Qian, Y.; Sun, X.; Jiang, X. Biomaterials 2012, 33, 3324.  doi: 10.1016/j.biomaterials.2012.01.025

    40. [40]

      Wei, X.; Zhan, C.; Chen, X.; Hou, J.; Xie, C.; Lu, W. Mol. Pharmaceutics 2014, 11, 3261.  doi: 10.1021/mp500086e

    41. [41]

      Xin, H.; Jiang, X.; Gu, J.; Sha, X.; Chen, L.; Law, K.; Chen, Y.; Wang, X.; Jiang, Y.; Fang, X. Biomaterials 2011, 32, 4293.  doi: 10.1016/j.biomaterials.2011.02.044

    42. [42]

      Chen, C.; Duan, Z.; Yuan, Yan.; Li, R.; Pang, L.; Liang, J.; Xu, X.; Wang, J. ACS Appl. Mater. Interfaces 2017, 9, 5864.  doi: 10.1021/acsami.6b15831

    43. [43]

      Shao, K.; Huang, R.; Li, J.; Han, L.; Ye, L.; Lou, J.; Jiang, C. J. Control. Release 2010, 147, 118.  doi: 10.1016/j.jconrel.2010.06.018

    44. [44]

      Shen, J.; Zhan, C.; Xie, C.; Meng, Q.; Gu, B.; Li, C.; Zhang, Y.; Lu, W. J. Drug. Target. 2011, 19, 197.  doi: 10.3109/1061186X.2010.483517

    45. [45]

      Tian, T.; Li, J.; Xie, C.; Sun, Y.; Lei, H.; Liu, X.; Xia, J.; Shi, J.; Wang, L.; Lu, W.; Fan, C. ACS Appl. Mater. Interfaces 2018, 10, 3414.  doi: 10.1021/acsami.7b17927

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    5. [5]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    6. [6]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    7. [7]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    8. [8]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    9. [9]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    12. [12]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    16. [16]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    17. [17]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    18. [18]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(13)
  • Abstract views(1199)
  • HTML views(270)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return