Citation: Zhang Qian, Liu Qingqing, Zhang Qianqian, Fan Xia, Zhai Jin. Facile Fabrication of Heterogeneous Nanochannels with High Ionic Rectification[J]. Acta Chimica Sinica, ;2018, 76(5): 400-407. doi: 10.6023/A18010030 shu

Facile Fabrication of Heterogeneous Nanochannels with High Ionic Rectification

  • Corresponding author: Zhai Jin, zhaijin@buaa.edu.cn
  • Received Date: 21 January 2018
    Available Online: 23 May 2018

    Fund Project: the National Key Research and Development Program of China 2017YFA0206900the National Natural Science Foundation of China 21641006Project supported by the National Key Research and Development Program of China (Nos. 2017YFA0206902, 2017YFA0206900) and the National Natural Science Foundation of China (No. 21641006)the National Key Research and Development Program of China 2017YFA0206902

Figures(10)

  • Ion channels in cell membranes play crucial roles in many biological activities. Many artificial nanochannels have been constructed to mimic the organism functions and sensitive to external stimuli. The artificial nanochannels have drawn enormous research attention due to their potential applications and simplicity. In this work, the hourglass shaped alumina nanochannels were fabricated using a double-sided anodization method with an in situ pore opening process. We constructed organic-inorganic heterogeneous nanochannels based on anodic alumina oxide (AAO) and transparent tape by the method of heat treatment. The surface morphology and component of nanoporous heterogeneous membrane were characterized by scanning electron microscope (SEM) and ATR-FTIR spectrum. These two kinds of nanochannels have differential diameters and amphoteric characteristics. Heterogeneous nanochannels are composed of organic nanochannels and AAO pores containing carboxyl and hydroxyl groups, respectively. Ion transport through the heterogeneous nanochannels can be modulated, because of the protonation state of the nanochannels under different pH conditions. Because of the heterogeneity of structure and charge, heterojunction is formed in the junction of anodic alumina oxide nanochannels and organic nanochannels. Such an abrupt junction yields a more efficient control of ion accumulation and depletion in the heterogeneous nanochannel. The ionic transport properties of heterogeneous nanochannels can be studied by measuring the current-voltage (I-V) curves. The heterogeneous nanochannels exhibit pH sensitivity. Changing the pH value from acidic to alkaline values, a significant decrease in positive charges and the deprotonated carboxyl group with negative charges can be observed. Due to the synergistic effect of the nanoporous AAO and organic nanochannels, heterogeneous nanochannels exhibit high and controllable rectification with single rectification direction over a wide pH range. The diode-like behavior is quantified by measuring the current rectification ratios. The novel strategy introduced here is a low-cost, scalable, and robust alternative for the fabrication of heterogeneous nanochannels system for nanofluidic applications. This porous heterogeneous membrane have potential applications in the fields of ion transport, separation of biomolecules and energy conversion system.
  • 加载中
    1. [1]

      Gouaux, E.; MacKinnon, R. Science 2005, 310, 1461.  doi: 10.1126/science.1113666

    2. [2]

      Beckstein, O.; Biggin, P. C.; Bond, P.; Bright, J. N.; Domene, C.; Grottesi, A.; Holyoake, J.; Sansom, M. S. P. FEBS Lett. 2003, 555, 85.  doi: 10.1016/S0014-5793(03)01151-7

    3. [3]

      Jiang, Y. X.; Lee, A.; Chen, J. Y.; Cadene, M.; Chait, B. T.; MacKinnon, R. Nature 2002, 417, 515.  doi: 10.1038/417515a

    4. [4]

      Hou, X.; Jiang, L. ACS Nano 2009, 3, 3339.  doi: 10.1021/nn901402b

    5. [5]

      de la Escosura-Muniz, A.; Merkoci, A. ACS Nano 2012, 6, 7556.  doi: 10.1021/nn301368z

    6. [6]

      Eisenman, G.; Horn, R. J. Membrane Biol. 1983, 76, 197.  doi: 10.1007/BF01870364

    7. [7]

      Meer, G.; Voelker, D. R.; Feigenson, G. W. Nat. Rev. Mol. Cell Bio. 2008, 9, 112.  doi: 10.1038/nrm2330

    8. [8]

      Wang, H.; Liu, Q.; Li, W. H.; Wen, L. P.; Zheng, D.; Bo, Z. S.; Jiang, L. ACS Nano 2016, 10, 3606.  doi: 10.1021/acsnano.5b08079

    9. [9]

      Han, K. Y.; Heng, L. P.; Wen, L. P.; Jiang, L. Nanoscale 2016, 8, 12318.  doi: 10.1039/C6NR02506D

    10. [10]

      Zhang, W. J.; Meng, Z. Y.; Zhai, J.; Heng, L. P. Chem. Commun. 2014, 50, 3552.  doi: 10.1039/c3cc47999d

    11. [11]

      Chen, Y.; Zhou, D.; Meng, Z. Y.; Zhai, J. Chem. Commun. 2016, 52, 10020.
       

    12. [12]

      Xu, Y. L.; Meng, Z. Y.; Zhai, J. Acta Chim. Sinica 2016, 74, 538.
       

    13. [13]

      Zhou, D.; Meng, Z. Y.; Zhang, M. H.; Zhai, J. Acta Chim. Sinica 2015, 73, 716.
       

    14. [14]

      Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L. J. Am. Chem. Soc. 2014, 136, 12265.  doi: 10.1021/ja503692z

    15. [15]

      Zeng, L.; Yang, Z.; Zhang, H. C.; Hou, X.; Tian, Y.; Yang, F.; Zhou, J. J.; Li, L.; Jiang, L. Small 2014, 10, 793.  doi: 10.1002/smll.201301647

    16. [16]

      Che, Y. P.; Zhai, J. Sci. Sin. Chim. 2015, 45, 262.
       

    17. [17]

      Kong, Y.; Fan, X.; Zhang, M. H.; Hou, X.; Liu, Z. Y.; Zhai, J.; Jiang, L. ACS Appl. Mater. Interfaces 2013, 5, 7931.  doi: 10.1021/am402004k

    18. [18]

      Meng, Z. Y.; Chen, Y.; Li, X. L.; Xu, Y. L.; Zhai, J. ACS Appl. Mater. Interfaces 2015, 7, 7709.  doi: 10.1021/acsami.5b00647

    19. [19]

      Li, X. L.; Wang, Y.; Zhai, J. Acta Chim. Sinica 2016, 74, 597.  doi: 10.3969/j.issn.0253-2409.2016.05.012
       

    20. [20]

      Li, C. Y.; Ma, F. X.; Wu, Z. Q.; Gao, H. L.; Shao, W. T.; Wang, K.; Xia, X. H. Adv. Funct. Mater. 2013, 23, 3836.  doi: 10.1002/adfm.v23.31

    21. [21]

      Kong, Y.; Fan, X.; Zhang, M. H.; Hou, X.; Liu, Z. Y.; Zhai, J.; Jiang, L. ACS Appl. Mater. Interfaces 2013, 5, 7931.  doi: 10.1021/am402004k

    22. [22]

      Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.
       

    23. [23]

      Meng, Z. Y.; Bao, H.; Wang, J. T.; Jiang, C. D.; Zhang, M. H.; Zhai, J.; Jiang, L. Adv. Mater. 2014, 26, 2329.  doi: 10.1002/adma.v26.15

    24. [24]

      Li, P.; Xie, G. H.; Kong, X. Y.; Zhang, Z.; Xiao, K.; Wen, L. P.; Jiang, L. Angew. Chem., Int. Ed. 2016, 55, 15637.  doi: 10.1002/anie.201609161

    25. [25]

      Ali, M.; Nasir, S.; Ramirez, P.; Ahmed, I.; Nguyen, Q. H.; Fruk, L.; Mafe, S.; Ensinger, W. Adv. Funct. Mater. 2012, 22, 390.  doi: 10.1002/adfm.201102146

    26. [26]

      Zhang, H. C.; Hou, X.; Hou, J.; Zeng, L.; Tian, Y.; Li, L.; Jiang, L. Adv. Funct. Mater. 2015, 25, 1102.  doi: 10.1002/adfm.v25.7

    27. [27]

      Buchsbaum, S. F.; Nguyen, G.; Howorka, S.; Siwy, Z. S. J. Am. Chem. Soc. 2014, 136, 9902.  doi: 10.1021/ja505302q

    28. [28]

      Hou, X.; Liu, Y. J.; Dong, H.; Yang, F.; Li, L.; Jiang, L. Adv. Mater. 2010, 22, 2440.  doi: 10.1002/adma.v22:22

    29. [29]

      Chun, K. Y.; Choi, W.; Roh, S. C.; Han, C. S. Nanoscale 2015, 7, 12427.  doi: 10.1039/C5NR02743H

    30. [30]

      Wang, R.; Sun, Y.; Zhang, F.; Song, M. M.; Tian, D. M.; Li, H. B. Angew. Chem., Int. Ed. 2017, 56, 5294.  doi: 10.1002/anie.201702175

    31. [31]

      Kameta, N.; Matsuzawa, T.; Yaoi, K.; Masuda, M. RSC Adv. 2016, 6, 36744.  doi: 10.1039/C6RA06793J

    32. [32]

      Meng, Z. Y.; Jiang, C. D.; Li, X. L.; Zhai, J. ACS Appl. Mater. Interfaces 2014, 6, 3794.  doi: 10.1021/am5002822

    33. [33]

      Hou, X.; Guo, W.; Xia, F.; Nie, F. Q.; Dong, H.; Tian, Y.; Wen, L. P.; Wang, L.; Cao, L. X.; Yang, Y.; Xue, J. M.; Song, Y. L.; Wang, Y. G.; Liu, D. S.; Jiang, L. J. Am. Chem. Soc. 2009, 131, 7800.  doi: 10.1021/ja901574c

    34. [34]

      Han, C. P.; Su, H. Y.; Sun, Z. Y.; Wen, L.; Tian, D. M.; Xu, K.; Hu, J. F.; Wang, A. M.; Li, H. B.; Jiang, L. Chem. Eur. J. 2013, 19, 9388.  doi: 10.1002/chem.v19.28

    35. [35]

      Guan, W. J.; Reed, M. A. Nano Lett. 2012, 12, 6441.  doi: 10.1021/nl303820a

    36. [36]

      Kim, J.; Kim, H. Y.; Lee, H.; Kim, S. J. Langmuir 2016, 32, 6478.  doi: 10.1021/acs.langmuir.6b01178

    37. [37]

      Zhang, Q. Q.; Liu, Z. Y.; Wang, K. F.; Zhai, J. Adv. Funct. Mater. 2015, 25, 2091.  doi: 10.1002/adfm.v25.14

    38. [38]

      Zhang, J. C.; Yang, Y.; Zhang, Z. C.; Wang, P. P.; Wang, X. Adv. Mater. 2014, 26, 1071.  doi: 10.1002/adma.201304270

    39. [39]

      Cheng, L. J.; Guo, L. J. ACS Nano 2009, 3, 575.  doi: 10.1021/nn8007542

    40. [40]

      Zhang, Z.; Kong, X. Y.; Xiao, K.; Liu, Q.; Xie, G. H.; Li, P.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. J. Am. Chem. Soc. 2015, 137, 14765.  doi: 10.1021/jacs.5b09918

    41. [41]

      Cheng, H. F.; Zhou, Y.; Feng, Y. P.; Geng, W. X.; Liu, Q. F.; Guo, W.; Jiang, L. Adv. Mater. 2017, 29, 1700177.  doi: 10.1002/adma.201700177

    42. [42]

      Sui, X.; Zhang, Z.; Zhang, Z. Y.; Wang, Z. W.; Li, C.; Yuan, H.; Gao, L. C.; Wen, L. P.; Fan, X.; Yang, L. J.; Zhang, X. R.; Jiang, L. Angew. Chem. Int. Ed. 2016, 55, 13056.  doi: 10.1002/anie.201606469

    43. [43]

      Chen, W.; Jin, B.; Hu, Y. L.; Lu, Y.; Xia, X. H. Small 2012, 8, 1001.  doi: 10.1002/smll.201102117

    44. [44]

      Wang, H.; Liu, Q.; Li, W. H.; Wen, L. P.; Zheng, D.; Bo, Z. S.; Jiang, L. ACS Nano 2016, 10, 3606.  doi: 10.1021/acsnano.5b08079

    45. [45]

      Hernandez-Guerrero, M.; Stenzel, M. H. Polym. Chem. 2012, 3, 563.  doi: 10.1039/C1PY00219H

    46. [46]

      Choi, E.; Wang, C.; Chang, G. T.; Park, J. Nano Lett. 2016, 16, 2189.  doi: 10.1021/acs.nanolett.5b04246

    47. [47]

      Siwy, Z. S. Adv. Funct. Mater. 2006, 16, 735.  doi: 10.1002/(ISSN)1616-3028

    48. [48]

      Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L. J. Am. Chem. Soc. 2017, 139, 8905.  doi: 10.1021/jacs.7b02794

    49. [49]

      Gao, P. C.; Hu, L. T.; Liu, N. N.; Yang, Z. K.; Lou, X. D.; Zhai, T. Y.; Li, H. Q.; Xia, F. Adv. Mater. 2016, 28, 460.  doi: 10.1002/adma.v28.3

  • 加载中
    1. [1]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    4. [4]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    5. [5]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    9. [9]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    19. [19]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(26)
  • Abstract views(2042)
  • HTML views(559)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return