Citation: Zhang Qian, Liu Qingqing, Zhang Qianqian, Fan Xia, Zhai Jin. Facile Fabrication of Heterogeneous Nanochannels with High Ionic Rectification[J]. Acta Chimica Sinica, ;2018, 76(5): 400-407. doi: 10.6023/A18010030 shu

Facile Fabrication of Heterogeneous Nanochannels with High Ionic Rectification

  • Corresponding author: Zhai Jin, zhaijin@buaa.edu.cn
  • Received Date: 21 January 2018
    Available Online: 23 May 2018

    Fund Project: the National Key Research and Development Program of China 2017YFA0206900the National Natural Science Foundation of China 21641006Project supported by the National Key Research and Development Program of China (Nos. 2017YFA0206902, 2017YFA0206900) and the National Natural Science Foundation of China (No. 21641006)the National Key Research and Development Program of China 2017YFA0206902

Figures(10)

  • Ion channels in cell membranes play crucial roles in many biological activities. Many artificial nanochannels have been constructed to mimic the organism functions and sensitive to external stimuli. The artificial nanochannels have drawn enormous research attention due to their potential applications and simplicity. In this work, the hourglass shaped alumina nanochannels were fabricated using a double-sided anodization method with an in situ pore opening process. We constructed organic-inorganic heterogeneous nanochannels based on anodic alumina oxide (AAO) and transparent tape by the method of heat treatment. The surface morphology and component of nanoporous heterogeneous membrane were characterized by scanning electron microscope (SEM) and ATR-FTIR spectrum. These two kinds of nanochannels have differential diameters and amphoteric characteristics. Heterogeneous nanochannels are composed of organic nanochannels and AAO pores containing carboxyl and hydroxyl groups, respectively. Ion transport through the heterogeneous nanochannels can be modulated, because of the protonation state of the nanochannels under different pH conditions. Because of the heterogeneity of structure and charge, heterojunction is formed in the junction of anodic alumina oxide nanochannels and organic nanochannels. Such an abrupt junction yields a more efficient control of ion accumulation and depletion in the heterogeneous nanochannel. The ionic transport properties of heterogeneous nanochannels can be studied by measuring the current-voltage (I-V) curves. The heterogeneous nanochannels exhibit pH sensitivity. Changing the pH value from acidic to alkaline values, a significant decrease in positive charges and the deprotonated carboxyl group with negative charges can be observed. Due to the synergistic effect of the nanoporous AAO and organic nanochannels, heterogeneous nanochannels exhibit high and controllable rectification with single rectification direction over a wide pH range. The diode-like behavior is quantified by measuring the current rectification ratios. The novel strategy introduced here is a low-cost, scalable, and robust alternative for the fabrication of heterogeneous nanochannels system for nanofluidic applications. This porous heterogeneous membrane have potential applications in the fields of ion transport, separation of biomolecules and energy conversion system.
  • 加载中
    1. [1]

      Gouaux, E.; MacKinnon, R. Science 2005, 310, 1461.  doi: 10.1126/science.1113666

    2. [2]

      Beckstein, O.; Biggin, P. C.; Bond, P.; Bright, J. N.; Domene, C.; Grottesi, A.; Holyoake, J.; Sansom, M. S. P. FEBS Lett. 2003, 555, 85.  doi: 10.1016/S0014-5793(03)01151-7

    3. [3]

      Jiang, Y. X.; Lee, A.; Chen, J. Y.; Cadene, M.; Chait, B. T.; MacKinnon, R. Nature 2002, 417, 515.  doi: 10.1038/417515a

    4. [4]

      Hou, X.; Jiang, L. ACS Nano 2009, 3, 3339.  doi: 10.1021/nn901402b

    5. [5]

      de la Escosura-Muniz, A.; Merkoci, A. ACS Nano 2012, 6, 7556.  doi: 10.1021/nn301368z

    6. [6]

      Eisenman, G.; Horn, R. J. Membrane Biol. 1983, 76, 197.  doi: 10.1007/BF01870364

    7. [7]

      Meer, G.; Voelker, D. R.; Feigenson, G. W. Nat. Rev. Mol. Cell Bio. 2008, 9, 112.  doi: 10.1038/nrm2330

    8. [8]

      Wang, H.; Liu, Q.; Li, W. H.; Wen, L. P.; Zheng, D.; Bo, Z. S.; Jiang, L. ACS Nano 2016, 10, 3606.  doi: 10.1021/acsnano.5b08079

    9. [9]

      Han, K. Y.; Heng, L. P.; Wen, L. P.; Jiang, L. Nanoscale 2016, 8, 12318.  doi: 10.1039/C6NR02506D

    10. [10]

      Zhang, W. J.; Meng, Z. Y.; Zhai, J.; Heng, L. P. Chem. Commun. 2014, 50, 3552.  doi: 10.1039/c3cc47999d

    11. [11]

      Chen, Y.; Zhou, D.; Meng, Z. Y.; Zhai, J. Chem. Commun. 2016, 52, 10020.
       

    12. [12]

      Xu, Y. L.; Meng, Z. Y.; Zhai, J. Acta Chim. Sinica 2016, 74, 538.
       

    13. [13]

      Zhou, D.; Meng, Z. Y.; Zhang, M. H.; Zhai, J. Acta Chim. Sinica 2015, 73, 716.
       

    14. [14]

      Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L. J. Am. Chem. Soc. 2014, 136, 12265.  doi: 10.1021/ja503692z

    15. [15]

      Zeng, L.; Yang, Z.; Zhang, H. C.; Hou, X.; Tian, Y.; Yang, F.; Zhou, J. J.; Li, L.; Jiang, L. Small 2014, 10, 793.  doi: 10.1002/smll.201301647

    16. [16]

      Che, Y. P.; Zhai, J. Sci. Sin. Chim. 2015, 45, 262.
       

    17. [17]

      Kong, Y.; Fan, X.; Zhang, M. H.; Hou, X.; Liu, Z. Y.; Zhai, J.; Jiang, L. ACS Appl. Mater. Interfaces 2013, 5, 7931.  doi: 10.1021/am402004k

    18. [18]

      Meng, Z. Y.; Chen, Y.; Li, X. L.; Xu, Y. L.; Zhai, J. ACS Appl. Mater. Interfaces 2015, 7, 7709.  doi: 10.1021/acsami.5b00647

    19. [19]

      Li, X. L.; Wang, Y.; Zhai, J. Acta Chim. Sinica 2016, 74, 597.  doi: 10.3969/j.issn.0253-2409.2016.05.012
       

    20. [20]

      Li, C. Y.; Ma, F. X.; Wu, Z. Q.; Gao, H. L.; Shao, W. T.; Wang, K.; Xia, X. H. Adv. Funct. Mater. 2013, 23, 3836.  doi: 10.1002/adfm.v23.31

    21. [21]

      Kong, Y.; Fan, X.; Zhang, M. H.; Hou, X.; Liu, Z. Y.; Zhai, J.; Jiang, L. ACS Appl. Mater. Interfaces 2013, 5, 7931.  doi: 10.1021/am402004k

    22. [22]

      Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.
       

    23. [23]

      Meng, Z. Y.; Bao, H.; Wang, J. T.; Jiang, C. D.; Zhang, M. H.; Zhai, J.; Jiang, L. Adv. Mater. 2014, 26, 2329.  doi: 10.1002/adma.v26.15

    24. [24]

      Li, P.; Xie, G. H.; Kong, X. Y.; Zhang, Z.; Xiao, K.; Wen, L. P.; Jiang, L. Angew. Chem., Int. Ed. 2016, 55, 15637.  doi: 10.1002/anie.201609161

    25. [25]

      Ali, M.; Nasir, S.; Ramirez, P.; Ahmed, I.; Nguyen, Q. H.; Fruk, L.; Mafe, S.; Ensinger, W. Adv. Funct. Mater. 2012, 22, 390.  doi: 10.1002/adfm.201102146

    26. [26]

      Zhang, H. C.; Hou, X.; Hou, J.; Zeng, L.; Tian, Y.; Li, L.; Jiang, L. Adv. Funct. Mater. 2015, 25, 1102.  doi: 10.1002/adfm.v25.7

    27. [27]

      Buchsbaum, S. F.; Nguyen, G.; Howorka, S.; Siwy, Z. S. J. Am. Chem. Soc. 2014, 136, 9902.  doi: 10.1021/ja505302q

    28. [28]

      Hou, X.; Liu, Y. J.; Dong, H.; Yang, F.; Li, L.; Jiang, L. Adv. Mater. 2010, 22, 2440.  doi: 10.1002/adma.v22:22

    29. [29]

      Chun, K. Y.; Choi, W.; Roh, S. C.; Han, C. S. Nanoscale 2015, 7, 12427.  doi: 10.1039/C5NR02743H

    30. [30]

      Wang, R.; Sun, Y.; Zhang, F.; Song, M. M.; Tian, D. M.; Li, H. B. Angew. Chem., Int. Ed. 2017, 56, 5294.  doi: 10.1002/anie.201702175

    31. [31]

      Kameta, N.; Matsuzawa, T.; Yaoi, K.; Masuda, M. RSC Adv. 2016, 6, 36744.  doi: 10.1039/C6RA06793J

    32. [32]

      Meng, Z. Y.; Jiang, C. D.; Li, X. L.; Zhai, J. ACS Appl. Mater. Interfaces 2014, 6, 3794.  doi: 10.1021/am5002822

    33. [33]

      Hou, X.; Guo, W.; Xia, F.; Nie, F. Q.; Dong, H.; Tian, Y.; Wen, L. P.; Wang, L.; Cao, L. X.; Yang, Y.; Xue, J. M.; Song, Y. L.; Wang, Y. G.; Liu, D. S.; Jiang, L. J. Am. Chem. Soc. 2009, 131, 7800.  doi: 10.1021/ja901574c

    34. [34]

      Han, C. P.; Su, H. Y.; Sun, Z. Y.; Wen, L.; Tian, D. M.; Xu, K.; Hu, J. F.; Wang, A. M.; Li, H. B.; Jiang, L. Chem. Eur. J. 2013, 19, 9388.  doi: 10.1002/chem.v19.28

    35. [35]

      Guan, W. J.; Reed, M. A. Nano Lett. 2012, 12, 6441.  doi: 10.1021/nl303820a

    36. [36]

      Kim, J.; Kim, H. Y.; Lee, H.; Kim, S. J. Langmuir 2016, 32, 6478.  doi: 10.1021/acs.langmuir.6b01178

    37. [37]

      Zhang, Q. Q.; Liu, Z. Y.; Wang, K. F.; Zhai, J. Adv. Funct. Mater. 2015, 25, 2091.  doi: 10.1002/adfm.v25.14

    38. [38]

      Zhang, J. C.; Yang, Y.; Zhang, Z. C.; Wang, P. P.; Wang, X. Adv. Mater. 2014, 26, 1071.  doi: 10.1002/adma.201304270

    39. [39]

      Cheng, L. J.; Guo, L. J. ACS Nano 2009, 3, 575.  doi: 10.1021/nn8007542

    40. [40]

      Zhang, Z.; Kong, X. Y.; Xiao, K.; Liu, Q.; Xie, G. H.; Li, P.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. J. Am. Chem. Soc. 2015, 137, 14765.  doi: 10.1021/jacs.5b09918

    41. [41]

      Cheng, H. F.; Zhou, Y.; Feng, Y. P.; Geng, W. X.; Liu, Q. F.; Guo, W.; Jiang, L. Adv. Mater. 2017, 29, 1700177.  doi: 10.1002/adma.201700177

    42. [42]

      Sui, X.; Zhang, Z.; Zhang, Z. Y.; Wang, Z. W.; Li, C.; Yuan, H.; Gao, L. C.; Wen, L. P.; Fan, X.; Yang, L. J.; Zhang, X. R.; Jiang, L. Angew. Chem. Int. Ed. 2016, 55, 13056.  doi: 10.1002/anie.201606469

    43. [43]

      Chen, W.; Jin, B.; Hu, Y. L.; Lu, Y.; Xia, X. H. Small 2012, 8, 1001.  doi: 10.1002/smll.201102117

    44. [44]

      Wang, H.; Liu, Q.; Li, W. H.; Wen, L. P.; Zheng, D.; Bo, Z. S.; Jiang, L. ACS Nano 2016, 10, 3606.  doi: 10.1021/acsnano.5b08079

    45. [45]

      Hernandez-Guerrero, M.; Stenzel, M. H. Polym. Chem. 2012, 3, 563.  doi: 10.1039/C1PY00219H

    46. [46]

      Choi, E.; Wang, C.; Chang, G. T.; Park, J. Nano Lett. 2016, 16, 2189.  doi: 10.1021/acs.nanolett.5b04246

    47. [47]

      Siwy, Z. S. Adv. Funct. Mater. 2006, 16, 735.  doi: 10.1002/(ISSN)1616-3028

    48. [48]

      Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L. J. Am. Chem. Soc. 2017, 139, 8905.  doi: 10.1021/jacs.7b02794

    49. [49]

      Gao, P. C.; Hu, L. T.; Liu, N. N.; Yang, Z. K.; Lou, X. D.; Zhai, T. Y.; Li, H. Q.; Xia, F. Adv. Mater. 2016, 28, 460.  doi: 10.1002/adma.v28.3

  • 加载中
    1. [1]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    2. [2]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    3. [3]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    5. [5]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    6. [6]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    7. [7]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    8. [8]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    9. [9]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    18. [18]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    19. [19]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    20. [20]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(26)
  • Abstract views(2247)
  • HTML views(598)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return