Citation: Gu Zhengyang, Ji Shunjun. Recent Advances in Cobalt Catalyzed Isocyanide Coupling Reactions[J]. Acta Chimica Sinica, ;2018, 76(5): 347-356. doi: 10.6023/A18010023 shu

Recent Advances in Cobalt Catalyzed Isocyanide Coupling Reactions

  • Corresponding author: Ji Shunjun, shunjun@suda.edu.cn
  • Received Date: 16 January 2018
    Available Online: 30 May 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21772137, 21672157, 21372174), the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 16KJA150002), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Soochow University for financial support, and State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materialsthe National Natural Science Foundation of China 21372174the National Natural Science Foundation of China 21772137Priority Academic Program Development of Jiangsu Higher Education Institutions PAPDthe National Natural Science Foundation of China 21672157the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions 16KJA150002

Figures(18)

  • Isocyanide is an important reactive reactant containing stable divalent carbon atoms, which has been widely used in the construction of nitrogen compounds, new drugs and natural products. During the past decades, exhaustive efforts have been devoted to the discovery of highly efficient reactions involving isocyanide on the basis of the development of the Passerini and Ugi reactions. Several types of reactions involving isocyanides have been reported, such as nucleophilic attack, electrophilic addition, imidoylation reactions, and oxidation, etc. Recently, isocyanides have found a new application as versatile C1 building blocks in transition metal catalysis. The transition metal catalyzed reactions involving isocyanide insertion offer a vast potential to construct C—C or C-N bonds for the synthesis of nitrogen-containing fine chemicals. As we know, the catalysts used in isocyanide insertion reactions are mainly concentrated in some valuable transition metals compounds, such as Pd, Rh, Ag and other metals. Therefore, the development of catalysts based on the naturally more abundant, cost efficient transition metal complexes, represents an attractive alternative. In this context, rather environmentally benign cobalt complexes bear great potential for applications in the coupling reactions. The reduced electronegativity of cobalt as compared to the homologous group 9 elements translates into more nucleophilic organometallic cobalt intermediates which allow for unprecedented reaction pathways in transition-metal catalyzed C—H activations as well as significantly improved positional and chemo-selectivities. And in the recent years, notable success has been achieved with the development of cobalt catalyzed C—H functionalizations with either in situ generated or single-component cobalt-complexes under mild reaction conditions. How to find and use the cost efficient cobalt-complexes to catalyze the isocyanide coupling reaction is of great significance. Our group has been devoted to explore the isocyanide chemistry, and in recent years, we have achieved several progresses in the reaction of cobalt-catalyzed isocyanides. In this review we summarize the recent advances in the cobalt-catalyzed isocyanide coupling reactions.
  • 加载中
    1. [1]

      Lieke, W. Ann. Chem. Pharm. 1859, 112, 316.  doi: 10.1002/(ISSN)1099-0690

    2. [2]

      Scheuer, P. J. Acc. Chem. Res. 1992, 25, 433.  doi: 10.1021/ar00022a001

    3. [3]

      Passerini, M. Gazz. Chim. Ital. 1921, 51, 126.
       

    4. [4]

      Ugi, I.; Mey, R.; Fetzer, U.; Steinbruckner, C. Angew. Chem. 1959, 71, 386.
       

    5. [5]

      Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661.
       

    6. [6]

      Recent development of the Passerini and Ugi reactions, see selected reviews: (a) Dö mling, A. ; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168; (b) Zhu, J. Eur. J. Org. Chem. 2003, 1133; (c) Dö mling, A. Chem. Rev. 2006, 106, 17; (d) Ruijter, E. ; Scheffelaar, R. ; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234. (e) Sadjadi, S. ; Heravi, M. M. Tetrahedron 2011, 67, 2707; (f) Dö mling, A. ; Wang, W. ; Wang, K. Chem. Rev. 2012, 112, 3083.

    7. [7]

      (a) Liao, J. -Y. ; Shao, P. -L. ; Zhao, Y. J. Am. Chem. Soc. 2015, 137, 628. (b) Kobiki, Y. ; Kawaguchi, S. ; Ogawa, A. Org. Lett. 2015, 17, 3490. (c) Zhang, Z. ; Li, Z. -Y. ; Fu, B. ; Zhang, Z. -H. Chem. Commun. 2015, 51, 16312. (d) Zhang, Z. ; Huang, B. -L. ; Qiao, G. -Y. ; Zhu, L. ; Xiao, F. ; Chen, F. ; Fu, B. ; Zhang, Z. -H. Angew. Chem. Int. Ed. 2017, 56, 1.

    8. [8]

      (a) Saluste, C. G. ; Whitby, R. J. ; Furber, M. Angew. Chem. Int. Ed. 2000, 39, 4156; (b) Saluste, C. G. ; Whitby, R. J. ; Furber, M. Tetrahedron Lett. 2001, 42, 6191; (c) Tetala, K. K. R. ; Whitby, R. J. ; Light, M. E. ; Hurtshouse, M. B. Tetrahedron Lett. 2004, 45, 6991; (d) Saluste, C. G. ; Crumpler, S. ; Furber, M. ; Whitby, R. J. Tetrahedron Lett. 2004, 45, 6995. (e) Whitby, R. J. ; Saluste, C. G. ; Furber, M. Org. Biomol. Chem. 2004, 2, 1974.

    9. [9]

      (a) Baelen, G. V. ; Kuijer, S. ; Rýček, L. ; Sergeyev, S. ; Janssen, E. ; de Kanter, F. J. J. ; Maes, B. U. W. ; Ruijter, E. ; Orru, R. V. A. Chem. Eur. J. 2011, 17, 15039; (b) Estévez, V. ; Baelen, G. V. ; Lentferink, B. H. ; Vlaar, T. ; Janssen, E. ; Maes, B. U. W. ; Orru, R. V. A. ; Ruijter, E. ACS Catal. 2014, 4, 40; (c) Vlaar, T. ; Ruijter, E. ; Znabet, A. ; Janssen, E. ; de Kanter, F. J. J. ; Maes, B. U. W. ; Orru, R. V. A. Org. Lett. 2011, 13, 6496.

    10. [10]

      (a) Jaing, H. -F. ; Liu, B. -F. ; Li, Y. -B. ; Wang, A. -Z. ; Huang, H. -W. Org. Lett. 2011, 13, 1028; (b) Li, Y. -B. ; Zhao, J. ; Chen, H. -J. ; Liu, B. ; Jiang, H. -F. Chem. Commun. 2012, 48, 3545; (c) Liu, B. -F. ; Li, Y. -B. ; Yin, M. -Z. ; Wu, W. -Q. ; Jiang, H. -F. Chem. Commun. 2012, 48, 11446; (d) Jaing, H. -F. ; Yin, M. -Z. ; Li, Y. -B. ; Liu, B. -F. ; Zhao, J. -S. -W. ; Wu, W. -Q. Chem. Commun. 2014, 50, 2037; (e) Liu, B. -F. ; Li, Y. -B. ; Jaing, H. -F. ; Yin, M. -Z. ; Huang, H. -W. Adv. Synth. Catal. 2012, 354, 2288. (f) Li, Z. ; Zheng, J. ; Hu, W. -G. ; Li, J. -X. ; Wu, W. -Q. ; Jaing, H. -F. Org. Chem. Front. 2017, 4, 1363.

    11. [11]

      (a) Qiu, G. ; Liu, G. ; Pu, S. -Z. ; Wu, J. Chem. Commun. 2012, 48, 2903; (b) Qiu, G. ; He, Y. -H. ; Wu, J. Chem. Commun. 2012, 48, 3836; (c) Qiu, G. ; Liu, Y. ; Wu, J. Org. Biomol. Chem. 2013, 11, 798.

    12. [12]

      (a) Wang, J. ; Luo, S. ; Huang, J. -B. ; Mao, T. -T. ; Zhu, Q. Chem. Eur. J. 2014, 20, 11220; (b) Li, J. ; He, Y. -M. ; Luo, S. ; Lei, J. ; Wang, J. ; Xie, Z. -Q. ; Zhu, Q. J. Org. Chem. 2015, 80, 2223.

    13. [13]

      (a) Huang, X. -S. ; Cong, X. -F. ; Mi, P. -B. ; Bi, X. -H. Chem. Commun. 2017, 53, 3858. (b) Fang, G. -C. ; Liu, J. -Q. ; Fu, J. -K. ; Liu, Q. ; Bi, X. -H. Org. Lett. 2017, 19, 1346. (c) Wang, Y. -M. ; KiranKumar, R. ; Bi, X. -H. Tetrahedron Lett. 2016, 57, 5730. (d) Xiao, P. ; Yuan, H. -Y. ; Liu, J. -Q. ; Zheng, Y. -Y. ; Bi, X. -H. ; Zhang, J. -P. ACS Catal. 2015, 5, 6177.

    14. [14]

    15. [15]

      (a) Vllar, T. ; Ruijter, E. ; Maes, B. U. W. ; Orru, R. V. A. Angew. Chem. Int. Ed. 2013, 52, 7084; (b) Qiu, G. ; Ding, Q. -P. ; Wu, J. Chem. Soc. Rev. 2013, 42, 5257.

    16. [16]

      Kharasch, M. S.; Fields, E. K. J. Am. Chem. Soc. 1941, 63, 2316.  doi: 10.1021/ja01854a006

    17. [17]

      Hebrard, F.; Kalck, P. Chem. Rev. 2009, 109, 4272.  doi: 10.1021/cr8002533

    18. [18]

      (a) Khand, I. U. ; Knox, G. R. ; Pauson, P. L. ; Watts, W. E. J. Chem. Soc. D 1971, 36a. (b) Khand, I. U. ; Knox, G. R. ; Pauson, P. L. ; Watts, W. E. J. Chem. Soc., Perkin Trans. 1 1973, 975.

    19. [19]

      Sugano, K.; Tanase, T.; Kobayashi, K.; Yamamoto, Y. Chem. Lett. 1991, 921.
       

    20. [20]

      Zhu, T.-H.; Wang, S.-Y.; Wang, G.-N.; Ji, S.-J. Chem. Eur. J. 2013, 19, 5850.  doi: 10.1002/chem.201300239

    21. [21]

      Zhu, T.-H.; Xu, X.-P.; Cao, J.-J.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. Adv. Synth. Catal. 2014, 356, 509.  doi: 10.1002/adsc.201300745

    22. [22]

      Zhu, T.-H.; Wang, S.-Y.; Wei, T.-Q.; Ji, S.-J. Adv. Synth. Catal. 2015, 357, 823.  doi: 10.1002/adsc.v357.4

    23. [23]

      Zhu, T.-H.; Wang, S.-Y.; Tao, Y.-Q.; Wei, T.-Q.; Ji, S.-J. Org. Lett. 2014, 16, 1260.  doi: 10.1021/ol500286x

    24. [24]

      Xu, P.; Zhu, T.-H.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-J. RSC Adv. 2016, 6, 32467.  doi: 10.1039/C6RA03216H

    25. [25]

      Ahmadi, F.; Bazgir, A. RSC Adv. 2016, 6, 61955.  doi: 10.1039/C6RA06828F

    26. [26]

      Gao, Q.; Zhou, P.; Liu, F.; Hao, W.-J.; Yao, C.; Jiang, B.; Tu, S.-J. Chem. Commun. 2015, 51, 9519.  doi: 10.1039/C5CC02754C

    27. [27]

      Gu, Z.-Y.; Liu, C.-G.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2017, 82, 2223.  doi: 10.1021/acs.joc.6b02797

    28. [28]

      Zou, F.-H.; Chen, X.-W.; Hao, W.-Y. Tetrahedron 2017, 73, 758.  doi: 10.1016/j.tet.2016.12.057

    29. [29]

      Kalsi, D.; Barsu, N.; Sundararaju, B. Chem. Eur. J. 2018, 24, 1.  doi: 10.1002/chem.201705257

    30. [30]

      (a) Cui, X. ; Xu, X. ; Jin, L. -M. ; Wojtas, L. ; Zhang, X. P. Chem. Sci. 2015, 6, 1219. (b) Zhu, S. -F. ; Xu, X. ; Perman, J. A. ; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796. (c) Xu, X. ; Lu, H. -J. ; Ruppel, J. V. ; Cui, X. ; de Mesa, S. L. ; Wojtas, L. ; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292.

    31. [31]

      (a) Goswami, M. ; Lyaskovskyy, V. ; Domingos, S. R. ; Buma, W. J. ; Woutersen, S. ; Troeppner, O. ; Ivanović-Burmazović, I. ; Lu, H. -J. ; Cui, X. ; Zhang, X. P. ; Reijerse, E. J. ; DeBeer, S. ; van Schooneveld, M. M. ; Pfaff, F. F. ; Ray, K. ; de Bruin, B. J. Am. Chem. Soc. 2015, 137, 5468. (b) Paul, N. D. ; Mandal, S. ; Otte, M. ; Cui, X. ; Zhang, X. P. ; de Bruin, B. J. Am. Chem. Soc. 2014, 136, 1090.

    32. [32]

      Gu, Z.-Y.; Liu, Y.; Wang, F.; Bao, X.-G.; Wang, S.-Y.; Ji, S.-J. ACS Catal. 2017, 7, 3893.  doi: 10.1021/acscatal.7b00798

    33. [33]

      Jiang, T.; Gu, Z.-Y.; Yin, L.; Wang, S.-Y.; Ji, S.-J. J. Org. Chem. 2017, 82, 7913.  doi: 10.1021/acs.joc.7b01127

    34. [34]

      Gu, Z.-Y.; Li, J.-H.; Wang, S.-Y.; Ji, S.-J. Chem. Commun. 2017, 53, 11173.  doi: 10.1039/C7CC06531K

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    3. [3]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    13. [13]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    19. [19]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(49)
  • Abstract views(1406)
  • HTML views(307)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return