Citation: Li Pan, Liu Jian, Sun Weiyi, Tao Zhanliang, Chen Jun. Synthesis of Coin-like Vanadium Disulfide and Its Sodium Storage Performance[J]. Acta Chimica Sinica, ;2018, 76(4): 286-291. doi: 10.6023/A17120533 shu

Synthesis of Coin-like Vanadium Disulfide and Its Sodium Storage Performance

  • Corresponding author: Tao Zhanliang, taozhl@nankai.edu.cn
  • Received Date: 6 December 2017
    Available Online: 7 April 2018

    Fund Project: Project supported by the National Key R & D Program (No. 2016YFB0901502), National Natural Science Foundation of China (Nos. 51771094, 51371100) and 111 Project (No. B12015)National Natural Science Foundation of China 51371100the National Key R & D Program 2016YFB0901502111 Project B12015National Natural Science Foundation of China 51771094

Figures(4)

  • Sodium ion batteries (SIBs) have become one of candidates for post-lithium batteries due to the rich sodium resources and the similar physico-chemical properties between sodium and lithium, while the larger sodium ion radius affects the kinetic properties and ion mobility of the sodium ion batteries system, so finding the right electrode material has become the key to develop SIBs. Vanadium Disulfide (VS2) as a typical family member of transition metal chalcogenides (TMCs) has the graphene-like layered structure and excellent electrical conductivity, which provides sufficient space for the storage of sodium ions and ensures its high performance as anode for SIBs. In this work, we used the combination of hydrothermal method and ultrasonic stripping method to prepared three different Coin-like VS2 (VS2-Long, VS2-Middle, and VS2-Short) for sodium storage research. The results show that Coin-like VS2-Short (VS2-S) with the lowest stacking degree can expose more active sites and has a more stable structure so that it has a high capacity of 410 mAh·g-1 after 300 cycles at 100 mA·g-1 and a high rate capability of 333 mAh·g-1 even at 2000 mA·g-1. In addition, we also studied the mechanism of vanadium disulfide as electrode material of sodium ion batteries by using the ex-situ X-ray diffraction (XRD) and transmission electron microscopy (TEM). During discharge process, sodium ion was inserted into the layer of VS2 resulting in NaxVS2 at the voltage of 2.5~1.0 V, and then, NaxVS2 convert to sodium sulfide and vanadium between the voltage of 1.0~0.2 V, on the opposite charging process, sodium sulfide with vanadium will convert to NaxVS2 firstly and then vanadium disulfide will appeared again with the sodium ion deserted from the NaxVS2. This means that vanadium disulfide appears to be an insertion-conversion mechanism between 0.2~2.5 V.
  • 加载中
    1. [1]

      Xiang, X. D.; Zhang, K.; Chen, J. Adv. Mater. 2015, 27, 5343.  doi: 10.1002/adma.201501527

    2. [2]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928.  doi: 10.1126/science.1212741

    3. [3]

      Francisco, D. G.; Andreas, S.; Oriol, G. B. Renew. Sust. Energy Rev. 2012, 16, 2154.  doi: 10.1016/j.rser.2012.01.029

    4. [4]

      Chen, H. S.; Cong, T. N.; Yang, W. Prog. Nat. Sci. 2009, 19, 291.  doi: 10.1016/j.pnsc.2008.07.014

    5. [5]

      Nagelberg, A. S.; Worrell, W. L. J. Solid State Chem. 1979, 29, 345.
       

    6. [6]

      Shacklette, L. W.; Jow, T. R.; Townsend, L. J. Electrochem. Soc. 1985, 135, 2669.
       

    7. [7]

      Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sinica 2014, 72, 21.
       

    8. [8]

      Xiang, X. D.; Lu, Y. Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154.
       

    9. [9]

      Lin, X. Y. ; Wang, Y. ; Chen, J. Acta Chim. Sinica 2017, 75, 979.

    10. [10]

      Tan, C. L.; Lai, Z. C.; Zhang, H. Adv. Mater. 2017, 29, 1701392.  doi: 10.1002/adma.v29.37

    11. [11]

      Liu, Z. M.; Lu, T. C.; Song, T.; Ungyu, P. Energy Environ. Sci. 2017, 10, 1576.  doi: 10.1039/C7EE01100H

    12. [12]

      Lu, Y.; Zhao, Q.; Zhang, N.; Lei, K.; Li, F.; Chen, J. Adv. Funct. Mater. 2016, 26, 911.  doi: 10.1002/adfm.v26.6

    13. [13]

      Liu, X.; Zhang, K.; Lei, K.; Lei, K.; Li, F.; Tao, Z. L.; Chen, J. Nano Res. 2016, 9(1), 198.  doi: 10.1007/s12274-016-0981-5

    14. [14]

      Wang, Q. H.; Kourosh, K. Z.; Andras, K.; Jonathan, N.; Michael, S. Nat. Nanotechnol. 2012, 7, 699.  doi: 10.1038/nnano.2012.193

    15. [15]

      Rout, C. S.; Kim, B. H.; Xu, X.; Yang, J.; Jeong, H. Y.; Odkhuu, D.; Park, N.; Cho, J.; Shin, H. S. J. Am. Chem. Soc. 2013, 135, 8720.  doi: 10.1021/ja403232d

    16. [16]

      Chang, K.; Chen, W. X. Chem. Commun. 2011, 47, 4252.  doi: 10.1039/c1cc10631g

    17. [17]

      Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc. 2011, 133, 7296.  doi: 10.1021/ja201269b

    18. [18]

      Feng, J.; Peng, L.; Wu, C.; Sun, X.; Hu, S.; Lin, C.; Dai, J.; Yang, J.; Xie, Y. Adv. Mater. 2012, 24, 1969.  doi: 10.1002/adma.201104681

    19. [19]

      Feng, J.; Sun, X.; Wu, C.; Peng, L.; Lin, C.; Hu, S.; Yang, J.; Xie, Y. J. Am. Chem. Soc. 2011, 133, 17832.  doi: 10.1021/ja207176c

    20. [20]

      Fang, W. Y.; Zhao, H. B.; Xie, Y. P.; Fang, J. H.; Xu, J. Q.; Chen, Z. W. ACS Appl. Mater. Interfaces 2015, 7, 13044.  doi: 10.1021/acsami.5b03124

    21. [21]

      He, P.; Yan, M. Y.; Zhang, G. B.; Sun, R. M.; An, Q. Y.; Mai, L. Q. Adv. Energy Mater. 2017, 7, 1601920.  doi: 10.1002/aenm.v7.11

    22. [22]

      Sun, R. M.; Wei, Q. L.; Sheng, J. Z.; Shi, C. W.; An, Q. Y.; Liu, S. J.; Mai, L. Q. Nano Energy 2017, 35, 396.  doi: 10.1016/j.nanoen.2017.03.036

    23. [23]

      Chandra, S. R.; Ruchita, K.; Dattatray, J. L. Eur. J. Inorg. Chem. 2014, 5331.

    24. [24]

      Liu, X.; Shuai, H. L.; Huang, K. J. Anal. Methods 2015, 7, 8277.  doi: 10.1039/C5AY01793A

    25. [25]

      Rout, C. S.; Kim, B. H.; Xu, X.; Yang, J.; Jeong, H. Y.; Odkhuu, D.; Park, N.; Cho, J.; Shin, H. S. J. Am. Chem. Soc. 2013, 135, 8720.  doi: 10.1021/ja403232d

    26. [26]

      Li, Y.; Liang, Y.; Hernandez, F. C. R.; Yoo, H. D.; An, Q.; Yao, Y. Nano Energy 2015, 15, 453.  doi: 10.1016/j.nanoen.2015.05.012

    27. [27]

      Zhang, S. S. J. Mater. Chem. A 2015, 3, 7689.  doi: 10.1039/C5TA00623F

    28. [28]

      Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Adv. Mater. 2014, 26, 3854.  doi: 10.1002/adma.201306314

    29. [29]

      Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Angew. Chem., Int. Ed. 2014, 53, 12794.  doi: 10.1002/anie.201407898

    30. [30]

      Yang, C. H.; Ou, X.; Xiong, X. H.; Zheng, F. H.; Hu, R. Z.; Chen, Y.; Liu, M. L.; Huang, K. Energy Environ. Sci. 2017, 10, 107.  doi: 10.1039/C6EE03173K

  • 加载中
    1. [1]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    2. [2]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    4. [4]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    5. [5]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    7. [7]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    13. [13]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    14. [14]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    18. [18]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    19. [19]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(38)
  • Abstract views(3508)
  • HTML views(954)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return