Citation: Zhao Keli, Hao Ying, Zhu Mo, Cheng Guosheng. A Review: Biodegradation Strategy of Graphene-Based Materials[J]. Acta Chimica Sinica, ;2018, 76(3): 168-176. doi: 10.6023/A17110499 shu

A Review: Biodegradation Strategy of Graphene-Based Materials

  • Corresponding author: Cheng Guosheng, gscheng2006@sinano.ac.cn
  • Received Date: 22 November 2017
    Available Online: 7 March 2018

    Fund Project: the National Key Basic Research Program of China 2014CB965003the National Key Basic Research Program of China 973 ProgramProject supported by the National Key Basic Research Program of China (973 Program, No. 2014CB965003)

Figures(6)

  • Since its discovery in 2004, the new frontier materials graphene and its derivatives have attracted a great deal of attention on the fields of new batteries, sensors, new energy and biomedicine, due to their unique electrical, optical and mechanical properties. Specifically, it has been developed rapidly in the biomedical field. The good biocompatibility has endowed graphene and its derivatives great prospects for their biological applications. In order to realize the in vivo application of graphene materials and improve the safety of the environment and life system, it is crucial to consider and study on the biodegradation behaviors of graphene. The research on biodegradation of graphene currently mainly focuses on the enzymatic degradation. The degradation behaviors can be tuned by the modification via a series of methods, such as heterogeneous atom doping and surface functionalization, etc. The progress of biodegradation of graphene and their derivatives, especially the enzymatic degradation and their biomedical applications is discussed. The important basis and guidance to further promote the in vivo study of graphene materials will be provided.
  • 加载中
    1. [1]

      Zhang, Y.; Zheng, J.; Guo, M. Chin. J. Chem. 2016, 34, 1268.  doi: 10.1002/cjoc.v34.12

    2. [2]

      Jiang, S.; Qiu, H.; Gao, S.; Chen, P.; Li, Z.; Yu, K.; Yue, W.; Yang, C.; Huo, Y.; Wang, S. Chin. J. Chem. 2016, 34, 1039.  doi: 10.1002/cjoc.v34.10

    3. [3]

      Zhou, P.; He, D. Chin. J. Chem. 2016, 34, 795.  doi: 10.1002/cjoc.v34.8

    4. [4]

      Gu, X.; Zhang, S.; Hou, Y. Chin. J. Chem. 2016, 34, 13.  doi: 10.1002/cjoc.201500675

    5. [5]

      Liu, D.; Zhang, C.; Lv, X.; Zheng, X.; Zhang, L.; Zhi, L.; Yang, Q.-H. Chin. J. Chem. 2016, 34, 41.  doi: 10.1002/cjoc.201500321

    6. [6]

      Chen, W.; Sin, M.; Wei, P.-J.; Zhang, Q.-L.; Liu, J.-G. Chin. J. Chem. 2016, 34, 878.  doi: 10.1002/cjoc.201600196

    7. [7]

      Liu, Z.; Chen, W.; Fan, X.; Yu, J.; Zhao, Y. Chin. J. Chem. 2016, 34, 839.  doi: 10.1002/cjoc.v34.8

    8. [8]

      Gao, Y.; Wang, T.; Liu, F. Chin. J. Chem. 2016, 34, 1297.  doi: 10.1002/cjoc.v34.12

    9. [9]

      Wang, C.; Guo, Z.; Zhang, L.; Zhang, N.; Zhang, K.; Fei, B.; Wang, H.; Xu, J.; Shi, H.; Qin, M.; Ren, L.; Wu, X. Chin. J. Chem. 2016, 34, 1151.  doi: 10.1002/cjoc.v34.11

    10. [10]

      Zhang, J.; Jiang, M.; Xing, L.; Qin, K.; Liu, T.; Zhou, J.; Si, W.; Cui, H.; Zhuo, S. Chin. J. Chem. 2016, 34, 46.  doi: 10.1002/cjoc.201500656

    11. [11]

      Zhou, Q.; Chen, S.; Zhang, M.; Wang, L.; Li, Y.; Shi, G. Chin. J. Chem. 2016, 34, 59.  doi: 10.1002/cjoc.201500609

    12. [12]

      Fan, X.; Yang, Z.; Liu, Z. Chin. J. Chem. 2016, 34, 107.  doi: 10.1002/cjoc.201500076

    13. [13]

      Wang, R.; Jia, P.; Yang, Y.; An, N.; Zhang, Y.; Wu, H.; Hu, Z. Chin. J. Chem. 2016, 34, 114.  doi: 10.1002/cjoc.201500595

    14. [14]

      Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.  doi: 10.1021/cr900070d

    15. [15]

      Liang, T.; Kong, Y.; Chen, H.; Xu, M. Chin. J. Chem. 2016, 34, 32.  doi: 10.1002/cjoc.201500429

    16. [16]

      Zhang, Y.; Zhang, L.; Zhou, C. Acc. Chem. Res. 2013, 46, 2329.  doi: 10.1021/ar300203n

    17. [17]

      Zhao, D.; Li, Z.; Liu, L.; Zhang, Y.; Ren, D.; Li, J. Acta Chim. Sinica 2014, 72, 185.
       

    18. [18]

      Li, N.; Zhang, Q.; Gao, S.; Song, Q.; Huang, R.; Wang, L.; Liu, L.; Dai, J.; Tang, M.; Cheng, G. Sci. Rep. 2013, 3, 1604.  doi: 10.1038/srep01604

    19. [19]

      Xiao, M.; Kong, T.; Wang, W.; Song, Q.; Zhang, D.; Ma, Q.; Cheng, G. Adv. Funct. Mater. 2015, 25, 6165.  doi: 10.1002/adfm.v25.39

    20. [20]

      Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; Ruoff, R. S.; Kim, S. O. Angew. Chem. 2010, 49, 10084.  doi: 10.1002/anie.201006240

    21. [21]

      Jakus, A. E.; Secor, E. B.; Rutz, A. L.; Jordan, S. W.; Hersam, M. C.; Shah, R. N. ACS Nano 2015, 9, 4636.  doi: 10.1021/acsnano.5b01179

    22. [22]

      Cao, X.; Yin, Z.; Zhang, H. Energy Environ. Sci. 2014, 7, 1850.  doi: 10.1039/C4EE00050A

    23. [23]

      Wu, J.; Zhou, A.; Huang, Z.; Li, L.; Bai, H. Chin. J. Chem. 2016, 34, 67.  doi: 10.1002/cjoc.201500700

    24. [24]

      Liu, Y.; Dong, X.; Chen, P. Chem. Soc. Rev. 2012, 41, 2283.  doi: 10.1039/C1CS15270J

    25. [25]

      Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Drug Discovery Today 2017, 22, 1302.  doi: 10.1016/j.drudis.2017.04.002

    26. [26]

      Cheng, J.; Wan, W.; Zhu, W. Chin. J. Chem. 2016, 34, 53.  doi: 10.1002/cjoc.201500339

    27. [27]

      Li, Y.; Zhang, Y.; Han, G.; Xiao, Y.; Li, M.; Zhou, W. Chin. J. Chem. 2016, 34, 82.  doi: 10.1002/cjoc.201500747

    28. [28]

      Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876.  doi: 10.1021/ja803688x

    29. [29]

      Liu, J.; Cui, L.; Losic, D. Acta Biomater. 2013, 9, 9243.  doi: 10.1016/j.actbio.2013.08.016

    30. [30]

      Feng, L.; Zhang, S.; Liu, Z. Nanoscale 2011, 3, 1252.  doi: 10.1039/c0nr00680g

    31. [31]

      Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H. Small 2011, 7, 1569.  doi: 10.1002/smll.v7.11

    32. [32]

      Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Nano Lett. 2008, 8, 36.  doi: 10.1021/nl071822y

    33. [33]

      Fan, W.; Miao, Y.-E.; Ling, X.; Liu, T. Chin. J. Chem. 2016, 34, 73.  doi: 10.1002/cjoc.201500585

    34. [34]

      Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620.
       

    35. [35]

      Huang, J.; Zong, C.; Shen, H.; Liu, M.; Chen, B.; Ren, B.; Zhang, Z. Small 2012, 8, 2577.  doi: 10.1002/smll.v8.16

    36. [36]

      Feng, L.; Wu, L.; Qu, X. Adv. Mater. 2013, 25, 168.  doi: 10.1002/adma.201203229

    37. [37]

      Du, Y.; Guo, S. Nanoscale 2016, 8, 2532.  doi: 10.1039/C5NR07579C

    38. [38]

      Lin, J.; Chen, X.; Huang, P. Adv. Drug Delivery Rev. 2016, 105, 242.  doi: 10.1016/j.addr.2016.05.013

    39. [39]

      Keisham, B.; Cole, A.; Nguyen, P.; Mehta, A.; Berry, V. ACS Appl. Mater. Interfaces 2016, 8, 32717.  doi: 10.1021/acsami.6b12307

    40. [40]

      Meng, F.; Lu, W.; Li, Q.; Byun, J.-H.; Oh, Y.; Chou, T.-W. Adv. Mater. 2015, 27, 5113.  doi: 10.1002/adma.201501126

    41. [41]

      Wu, X.; Ding, S.-J.; Lin, K.; Su, J. J. Mater. Chem. B 2017, 5, 3084.  doi: 10.1039/C6TB03067J

    42. [42]

      Li, N.; Zhang, X.; Song, Q.; Su, R.; Zhang, Q.; Kong, T.; Liu, L.; Jin, G.; Tang, M.; Cheng, G. Biomaterials 2011, 32, 9374.  doi: 10.1016/j.biomaterials.2011.08.065

    43. [43]

      Qi, L.; Li, N.; Huang, R.; Song, Q.; Wang, L.; Zhang, Q.; Su, R.; Kong, T.; Tang, M.; Cheng, G. PLoS One 2013, 8, e59022.  doi: 10.1371/journal.pone.0059022

    44. [44]

      Song, Q.; Jiang, Z.; Li, N.; Liu, P.; Liu, L.; Tang, M.; Cheng, G. Biomaterials 2014, 35, 6930.  doi: 10.1016/j.biomaterials.2014.05.002

    45. [45]

      Ulloa Severino, F. P.; Ban, J.; Song, Q.; Tang, M.; Bianconi, G.; Cheng, G.; Torre, V. Sci. Rep. 2016, 6, 29640.  doi: 10.1038/srep29640

    46. [46]

      Bitounis, D.; Ali-Boucetta, H.; Hong, B. H.; Min, D.-H.; Kostarelos, K. Adv. Mater. 2013, 25, 2258.  doi: 10.1002/adma.201203700

    47. [47]

      Zhang, H.; Peng, C.; Yang, J.; Lv, M.; Liu, R.; He, D.; Fan, C.; Huang, Q. ACS Appl. Mater. Interfaces 2013, 5, 1761.  doi: 10.1021/am303005j

    48. [48]

      Wang, I. N. E.; Robinson, J. T.; Do, G.; Hong, G.; Gould, D. R.; Dai, H.; Yang, P. C. Small 2014, 10, 1479.  doi: 10.1002/smll.v10.8

    49. [49]

      Depan, D.; Girase, B.; Shah, J. S.; Misra, R. D. K. Acta Biomater. 2011, 7, 3432.  doi: 10.1016/j.actbio.2011.05.019

    50. [50]

      Murray, E.; Thompson, B. C.; Sayyar, S.; Wallace, G. G. Polym. Degrad. Stabil. 2015, 111, 71.  doi: 10.1016/j.polymdegradstab.2014.10.010

    51. [51]

      Singh, S. K.; Singh, M. K.; Nayak, M. K.; Kumari, S.; Shrivastava, S.; Grácio, J. J. A.; Dash, D. ACS Nano 2011, 5, 4987.  doi: 10.1021/nn201092p

    52. [52]

      Zhang, X.; Yin, J.; Peng, C.; Hu, W.; Zhu, Z.; Li, W.; Fan, C.; Huang, Q. Carbon 2011, 49, 986.  doi: 10.1016/j.carbon.2010.11.005

    53. [53]

      Yang, K.; Wan, J.; Zhang, S.; Zhang, Y.; Lee, S.-T.; Liu, Z. ACS Nano 2011, 5, 516.  doi: 10.1021/nn1024303

    54. [54]

      Sasidharan, A.; Swaroop, S.; Koduri, C. K.; Girish, C. M.; Chandran, P.; Panchakarla, L. S.; Somasundaram, V. H.; Gowd, G. S.; Nair, S.; Koyakutty, M. Carbon 2015, 95, 511.  doi: 10.1016/j.carbon.2015.08.074

    55. [55]

      Duch, M. C.; Budinger, G. R. S.; Liang, Y. T.; Soberanes, S.; Urich, D.; Chiarella, S. E.; Campochiaro, L. A.; Gonzalez, A.; Chandel, N. S.; Hersam, M. C.; Mutlu, G. M. Nano Lett. 2011, 11, 5201.  doi: 10.1021/nl202515a

    56. [56]

      Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C. Chem. Commun. 2011, 47, 2580.  doi: 10.1039/C0CC04812G

    57. [57]

      Pan, D.; Zhang, J.; Li, Z.; Wu, M. Adv. Mater. 2010, 22, 734.  doi: 10.1002/adma.v22:6

    58. [58]

      Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H.; Wei, H.; Zhang, H.; Sun, H.; Yang, B. Chem. Commun. 2011, 47, 6858.  doi: 10.1039/c1cc11122a

    59. [59]

      Li, L.-L.; Ji, J.; Fei, R.; Wang, C.-Z.; Lu, Q.; Zhang, J.-R.; Jiang, L.-P.; Zhu, J.-J. Adv. Funct. Mater. 2012, 22, 2971.  doi: 10.1002/adfm.v22.14

    60. [60]

      Bai, H.; Jiang, W.; Kotchey, G. P.; Saidi, W. A.; Bythell, B. J.; Jarvis, J. M.; Marshall, A. G.; Robinson, R. A. S.; Star, A. J. Phys. Chem. C 2014, 118, 10519.  doi: 10.1021/jp503413s

    61. [61]

      Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.-J. Nanoscale 2013, 5, 4015.  doi: 10.1039/c3nr33849e

    62. [62]

      Zhang, L.; Petersen, E. J.; Habteselassie, M. Y.; Mao, L.; Huang, Q. Environ. Prog. 2013, 181, 335.

    63. [63]

      Schreiner, K. M.; Filley, T. R.; Blanchette, R. A.; Bowen, B. B.; Bolskar, R. D.; Hockaday, W. C.; Masiello, C. A.; Raebiger, J. W. Environmen. Sci. Technol. 2009, 43, 3162.  doi: 10.1021/es801873q

    64. [64]

      Liu, L.; Zhu, C.; Fan, M.; Chen, C.; Huang, Y.; Hao, Q.; Yang, J.; Wang, H.; Sun, D. Nanoscale 2015, 7, 13619.  doi: 10.1039/C5NR02502H

    65. [65]

      Girish, C. M.; Sasidharan, A.; Gowd, G. S.; Nair, S.; Koyakutty, M. Adv. Healthcare Mater. 2013, 2, 1489.  doi: 10.1002/adhm.v2.11

    66. [66]

      Kotchey, G. P.; Hasan, S. A.; Kapralov, A. A.; Ha, S. H.; Kim, K.; Shvedova, A. A.; Kagan, V. E.; Star, A. Acc. Chem. Res. 2012, 45, 1770.  doi: 10.1021/ar300106h

    67. [67]

      Kotchey, G. P.; Zhao, Y.; Kagan, V. E.; Star, A. Adv. Drug Delivery Rev. 2013, 65, 1921.  doi: 10.1016/j.addr.2013.07.007

    68. [68]

      Vlasova, I. I.; Kapralov, A. A.; Michael, Z. P.; Burkert, S. C.; Shurin, M. R.; Star, A.; Shvedova, A. A.; Kagan, V. E. Toxicol. Appl. Pharm. 2016, 299, 58.  doi: 10.1016/j.taap.2016.01.002

    69. [69]

      Chen, M.; Qin, X.; Zeng, G. Trends Biotechnol. 2017, 35, 836.  doi: 10.1016/j.tibtech.2016.12.001

    70. [70]

      Xing, W.; Lalwani, G.; Rusakova, I.; Sitharaman, B. Part. Part. Syst. Charact. 2014, 31, 745.  doi: 10.1002/ppsc.v31.7

    71. [71]

      Allen, B. L.; Kichambare, P. D.; Gou, P.; Vlasova, I. I.; Kapralov, A. A.; Konduru, N.; Kagan, V. E.; Star, A. Nano Lett. 2008, 8, 3899.  doi: 10.1021/nl802315h

    72. [72]

      Kotchey, G. P.; Allen, B. L.; Vedala, H.; Yanamala, N.; Kapralov, A. A.; Tyurina, Y. Y.; Klein-Seetharaman, J.; Kagan, V. E.; Star, A. ACS Nano 2011, 5, 2098.  doi: 10.1021/nn103265h

    73. [73]

      Filizola, M.; Loew, G. H. J. Am. Chem. Soc. 2000, 122, 18.  doi: 10.1021/ja992793z

    74. [74]

      Loeblein, M.; Perry, G.; Tsang, S. H.; Xiao, W.; Collard, D.; Coquet, P.; Sakai, Y.; Teo, E. H. T. Adv. Healthcare Mater. 2016, 5, 1177.  doi: 10.1002/adhm.v5.10

    75. [75]

      Kurapati, R.; Russier, J.; Squillaci, M. A.; Treossi, E.; Ménard-Moyon, C.; Del Rio-Castillo, A. E.; Vazquez, E.; Samorì, P.; Palermo, V.; Bianco, A. Small 2015, 11, 3985.  doi: 10.1002/smll.201500038

    76. [76]

      Kurapati, R.; Backes, C.; Ménard-Moyon, C.; Coleman, J. N.; Bianco, A. Angew. Chem., Int. Ed. 2016, 55, 5506.  doi: 10.1002/anie.201601238

    77. [77]

      Sureshbabu, A. R.; Kurapati, R.; Russier, J.; Ménard-Moyon, C.; Bartolini, I.; Meneghetti, M.; Kostarelos, K.; Bianco, A. Biomaterials 2015, 72, 20.  doi: 10.1016/j.biomaterials.2015.08.046

    78. [78]

      Andón, F. T.; Kapralov, A. A.; Yanamala, N.; Feng, W.; Baygan, A.; Chambers, B. J.; Hultenby, K.; Ye, F.; Toprak, M. S.; Brandner, B. D.; Fornara, A.; Klein-Seetharaman, J.; Kotchey, G. P.; Star, A.; Shvedova, A. A.; Fadeel, B.; Kagan, V. E. Small 2013, 9, 2721.  doi: 10.1002/smll.v9.16

    79. [79]

      ten Have, R.; Teunissen, P. J. M. Chem. Rev. 2001, 101, 3397.  doi: 10.1021/cr000115l

    80. [80]

      Hayashi, Y.; Yamazaki, I. J. Biol. Chem. 1979, 254, 9101.

    81. [81]

      Arnhold, J. Biochemistry 2004, 69, 4.

    82. [82]

      Valli, K.; Wariishi, H.; Gold, M. H. Biochemistry 1990, 29, 8535.  doi: 10.1021/bi00489a005

    83. [83]

      Lalwani, G.; Xing, W.; Sitharaman, B. J. Mater. Chem. B 2014, 2, 6354.  doi: 10.1039/C4TB00976B

    84. [84]

      Rao, C. N. R.; Gopalakrishnan, K.; Govindaraj, A. Nano Today 2014, 9, 324.  doi: 10.1016/j.nantod.2014.04.010

    85. [85]

      Zhang, Y.; Liang, Y.; Zhou, J. Acta Chim. Sinica 2014, 72, 367.
       

    86. [86]

      Zhao, Y.; Allen, B. L.; Star, A. J. Phys. Chem. A 2011, 115, 9536.  doi: 10.1021/jp112324d

    87. [87]

      Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Chem. Soc. Rev. 2014, 43, 7067.  doi: 10.1039/C4CS00141A

    88. [88]

      Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nano Lett. 2011, 11, 2472.  doi: 10.1021/nl2009058

    89. [89]

      Huang, G.-J.; Chen, Z.-G.; Li, M.-D.; Yang, B.; Xin, M.-L.; Li, S.-P.; Yin, Z.-J. Acta Chim. Sinica 2016, 74, 789.  doi: 10.11862/CJIC.2016.117

    90. [90]

      Bianco, A.; Kostarelos, K.; Prato, M. Chem. Commun. 2011, 47, 10182.  doi: 10.1039/c1cc13011k

    91. [91]

      Rajendra, K.; Fanny, B.; Julie, R.; Sureshbabu, A. R.; Cécilia, M.-M.; Kostas, K.; Alberto, B. 2D Materials 2017, inpress.

    92. [92]

      Li, Y.; Feng, L.; Shi, X.; Wang, X.; Yang, Y.; Yang, K.; Liu, T.; Yang, G.; Liu, Z. Small 2014, 10, 1544.  doi: 10.1002/smll.v10.8

  • 加载中
    1. [1]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    4. [4]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    11. [11]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    19. [19]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    20. [20]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

Metrics
  • PDF Downloads(39)
  • Abstract views(4057)
  • HTML views(1128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return