Citation: Hu Shu-Bo, Chen Mu-Wang, Zhai Xiao-Yong, Zhou Yong-Gui. Synthesis of Tetrahydropyrrolo/indolo[1, 2-a]pyrazines by Enantioselective Hydrogenation of Heterocyclic Imines[J]. Acta Chimica Sinica, ;2018, 76(2): 103-106. doi: 10.6023/A17110476 shu

Synthesis of Tetrahydropyrrolo/indolo[1, 2-a]pyrazines by Enantioselective Hydrogenation of Heterocyclic Imines

  • Corresponding author: Zhou Yong-Gui, ygzhou@dicp.ac.cn
  • Received Date: 2 November 2017
    Accepted Date: 28 December 2017

    Fund Project: Dalian Bureau of Science and Technology 2016RD07the National Natural Science Foundation of China 21690074Project supported by the National Natural Science Foundation of China (Nos. 21532006, 21690074), the Chinese Academy of Sciences (No. QYZDJ-SSW-SLH035) and Dalian Bureau of Science and Technology (No. 2016RD07)the Chinese Academy of Sciences QYZDJ-SSW-SLH035the National Natural Science Foundation of China 21532006

Figures(3)

  • 1, 2, 3, 4-Tetrahydropyrrolo[1, 2-a]pyrazines are an important motif due to their biological activities and widely existing in natural products. Notably, the substituent and the absolute configuration are important for the medicinal efficacy. Thus, the synthesis of chiral tetrahydropyrrolo[1, 2-a]pyrazines has attracted much attention of scientists. Most synthetic methods utilized chiral starting materials or auxiliaries. Kinetic resolution was an alternative way to give chiral tetrahydropyrrolo[1, 2-a]pyrazines. The first cata-lytic asymmetric synthetic method was developed in 2011 by Li and Antilla through a chiral phosphoric acid-catalyzed asymmetric intramolecular aza-Friedel-Crafts reaction of aldehydes with N-aminoethylpyrroles in high enantiocontrol level. Subsequently, the sequential aerobic oxidation-asymmetric intramolecular aza-Friedel-Crafts reaction between N-aminoethylpyrroles and benzyl alcohols for the synthesis of tetrahydropyrrolo[1, 2-a]pyrazines was realized using chiral bifunctional heterogeneous materials composed of Au/Pd nanoparticles and chiral phosphoric acids. The asymmetric hydrogenation as an efficient way has been successfully applied to synthesize the kind of chiral amines. In 2012, Our group achieved the asymmetric hydrogenation of 1-substituted pyrrolo[1, 2-a]pyrazines via a substrate activation strategy. Recently, we reported the direct asymmetric hydrogenation of 3-substituted pyrrolo[1, 2-a]pyrazines in up to 96% ee values. Considering their impressive significance, herein, we successfully hydrogenated 3, 4-dihydropyrrolo[1, 2-a]pyrazines and 3, 4-dihydroindolo[1, 2-a]pyrazines with up to 99% yield and 95% ee. The reaction features mild condition, high enantioselectivity and high atom-economy. The typical procedure for asymmetric hydrogenation is as follows:A mixture of[Ir(COD)Cl]2 (3.0 mg, 0.0045 mmol) and the ligand Cy-WalPhos (6.6 mg, 0.0099 mmol) was stirred in toluene (1.0 mL) at room temperature for 5 min in the glove box. Then the solution was transferred to the vial containing the substrate 3, 4-dihydropyrrolo[1, 2-a]pyrazines (0.3 mmol) together with toluene (2.0 mL). The vial was taken to an autoclave and the hydrogenation was conducted at 40℃ as well as at a hydrogen pressure of 500 psi for 48 h. After carefully releasing the hydrogen, the autoclave was opened and the toluene was evaporated in vacuo. The residue was purified by column chromatography to afford the corresponding chiral tetrahydropyrrolo[1, 2-a]pyrazines.
  • 加载中
    1. [1]

      (a) Al-Mourabit, A. ; Zancanella, M. A. ; Tilvi, S. ; Romo, D. Nat. Prod. Rep. 2011, 28, 1229; (b) Papeo, G. ; Gómez-Zurita Frau, M. A. ; Borghi, D. ; Varasi, M. Tetrahedron Lett. 2005, 46, 8635.

    2. [2]

      (a) Peresada, V. P. ; Medvedev, O. S. ; Likhosherstov, A. M. ; Skoldinov, A. P. Khim. Farm. Zh. 1987, 21, 1054; (b) Seredenin, S. B. ; Voronina, T. A. ; Likhosherstov, A. M. ; Peresada, Y. P. ; Molodavkin, G. M. ; Halikas, J. A. US 5378846, 1995; (c) Seredenin, S. B. ; Voronina, T. A. ; Beshimov, A. ; Peresada, V. P. ; Likhosherstov, A. M. RU 2099055, 1997; (d) Negoro, T. ; Murata, M. ; Ueda, S. ; Fujitani, B. ; Ono, Y. ; Kuromiya, A. ; Komiya, M. ; Suzuki, K. ; Matsumoto, J. -I. J. Med. Chem. 1998, 41, 4118; (e) Likhosherstov, A. M. ; Filippova, O. V. ; Peresada, V. P. ; Kryzhanovskii, S. A. ; Vititnova, M. B. ; Kaverina, N. V. ; Reznikov, K. M. Pharm. Chem. J. 2003, 37, 6; (f) Merla, B. ; Christoph, T. ; Oberboersch, S. ; Schiene, K. ; Bahrenberg, G. ; Frank, R. ; Kuehnert, S. ; Schroeder, W. WO 2008046582, 2008[Chem. Abstr. 2008, 148, 472076]; (g) Henrich, M. ; Weil, T. ; Müller, S. ; Nagel, J. ; Gravius, A. ; Kauss, V. ; Zemribo, R. ; Erdmane, E. WO 2009095254, 2009[Chem. Abstr. 2009, 151, 221195]; (h) Gahman, T. C. ; Zhao, C. ; Lang, H. ; Massari, M. E. US 20090062253, 2009 [Chem. Abstr. 2009, 150, 283093]; (i) Zhu, B. ; Marinelli, B. A. ; Goldschmidt, R. ; Foleno, B. D. ; Hilliard, J. J. ; Bush, K. ; Macielag, M. Bioorg. Med. Chem. Lett. 2009, 19, 4933.

    3. [3]

      (a) Li, G. ; Rowland, G. B. ; Rowland, E. B. ; Antilla, J. C. Org. Lett. 2007, 9, 4065; (b) Gualandi, A. ; Cerisoli, L. ; Monari, M. ; Savoia, D. Synthesis 2011, 909; (c) Bhowmik, S. ; Kumar, A. K. S. ; Batra, S. Tetrahedron Lett. 2013, 54, 2251.

    4. [4]

      Kreituss, I.; Chen, K.-Y.; Eitel, S. H.; Adam, J.-M.; Wuitschik, G.; Fettes, A.; Bode, J. W. Angew. Chem., Int. Ed. 2016, 55, 1553.  doi: 10.1002/anie.201509256

    5. [5]

      He, Y.; Lin, M.; Li, Z.; Liang, X.; Li, G.; Antilla, J. C. Org. Lett. 2011, 13, 4490.  doi: 10.1021/ol2018328

    6. [6]

      Cheng, H.-G.; Miguélez, J.; Miyamura, H.; Yoo, W.-J.; Kobayashi, S. Chem. Sci. 2017, 8, 1356.  doi: 10.1039/C6SC03849B

    7. [7]

    8. [8]

      Huang, W.-X.; Yu, C.-B.; Shi, L.; Zhou, Y.-G. Org. Lett. 2014, 16, 3324.  doi: 10.1021/ol5013313

    9. [9]

      Hu, S.-B.; Chen, Z.-P.; Song, B.; Wang, J.; Zhou, Y.-G. Adv. Synth. Catal. 2017, 359, 2762.  doi: 10.1002/adsc.v359.16

    10. [10]

      (a) Xiao, D. ; Zhang, X. Angew. Chem. , Int. Ed. 2001, 40, 3425; (b) Wang, D. -W. ; Wang, X. -B. ; Wang, D. -S. ; Lu, S. -M. ; Zhou, Y. -G. ; Li, Y. -X. J. Org. Chem. 2009, 74, 2780; (c) Ji, Y. ; Shi, L. ; Chen, M. -W. ; Feng, G. -S. ; Zhou, Y. -G. J. Am. Chem. Soc. 2015, 137, 10496.

  • 加载中
    1. [1]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    7. [7]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    15. [15]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Zhanhui Yang Jiaxi Xu . (m+n+…) or [m+n+…]cycloaddition?. University Chemistry, 2025, 40(3): 387-389. doi: 10.12461/PKU.DXHX202406032

    19. [19]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    20. [20]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

Metrics
  • PDF Downloads(9)
  • Abstract views(1662)
  • HTML views(206)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return