Citation: Li Xinwei, Song Song, Jiao Ning. Oxidative Iodohydroxylation of Olefins with DMSO[J]. Acta Chimica Sinica, ;2017, 75(12): 1202-1206. doi: 10.6023/A17100448 shu

Oxidative Iodohydroxylation of Olefins with DMSO

  • Corresponding author: Song Song, ssong@bjmu.edu.cn Jiao Ning, jiaoning@pku.edu.cn
  • Received Date: 3 October 2017
    Available Online: 22 December 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21325206, 21632001 and 21602005) and the State Key Laboratory of Drug Researchthe National Natural Science Foundation of China 21632001the National Natural Science Foundation of China 21325206the National Natural Science Foundation of China 21602005

Figures(2)

  • Halohydrins bearing a hydroxyl and halide functional group, are privileged building blocks in organic synthesis and could be conveniently converted to other significant organic intermediates such as azidoalcohols, aminoalcohols, and epoxides, all of which are widely used in the synthesis of highly value-added chemicals. Among the approaches to halohydrins, the halohydroxylation of olefins provides a direct and efficient approach. The synthesis of bromohydrins has achieved great progress in recent years. However, the approaches to iodohydrins are still very limited. Our previous studies revealed that DMSO could oxidize halo anions to halo cations under acidic conditions. As our continuous development DMSO-based reactions, we report the iodohydroxylation of olefins by using DMSO and HI generated in situ. In this transformation, DMSO performed versatile roles as an oxidant, a solvent and an oxygen source. This reaction featured with simple operation, mild reaction condition, and wild substrate scope, and provided an efficient method to synthesize iodohydrins. Furthermore, the iodoetheration of olefins was also realized by using DMSO and alcohol as the solvent. A representative procedure for this reaction is as following:The mixture of alkene (0.5 mmol), NaI (0.6 mmol), conc. H2SO4 (1.0 mmol), DMSO (1 mL) and DCE (1 mL) were stirred at 60℃ under air. TCL monitor the reaction, and the product had a clear spot in phosphomolybdic acid chromogenic agent. After the reaction was completed, saturated solution of Na2S2O3 (0.5 mL) was added into the system to consume the extra I2. After cooling down to room temperature, the mixture was diluted with water (10 mL) and extracted with ethyl acetate (10 mL×3). The combined organic extract was washed with saturated solution of NaCl (15 mL), dried over MgSO4, and evaporated in vacuo. The residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate) to afford the desired product.
  • 加载中
    1. [1]

      Gribble, G. W. J. Chem. Educ. 2004, 81, 1441.  doi: 10.1021/ed081p1441

    2. [2]

      Dagani, M. J.; Barda, H. J.; Benya, T. J.; Sanders, D. C. Bromine Compounds in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002.

    3. [3]

      Neilson, A. H. Organic Bromine and Iodine Compounds in The Handbook of Environmental Chemistry, Springer, Berlin, Heidelberg, 2003.

    4. [4]

      (a) Smith, J. G.; Fieser, M. In Fieser and Fieser's Reagent for Organic Synthesis, Vol. 1~12, John Wiley and Sons, New York, 1990.(b) Grogan, G. Annu. Rep. Prog. Chem., Sect. B 2009, 105, 206.(c) Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.

    5. [5]

      (a) Sels, B. F.; De Vos, D. E.; Jacobs, P. A. J. Am. Chem. Soc. 2001, 123, 8350.(b) Pandit, P.; Gayen, K. S.; Khamarui, S.; Chatterjee, N.; Maiti, D. K. Chem. Commun. 2011, 47, 6933.(c) Dewkar, G. K.; Narina, S. V.; Sudalai, A. Org. Lett. 2003, 5, 4501.(d) Yang, X.; Wu, J.; Mao, X.; Jamison, T. F.; Hatton, T. A. Chem. Commun. 2014, 50, 3245.(e) Darensbourg, D. J.; Wilson, S. J. J. Am. Chem. Soc. 2011, 133, 18610.(f) Kozhushkov, S. I.; Yufit, D. S.; de Meijere, A. Adv. Synth. Catal. 2005, 347, 255.(g) Sels, B.; De Vos, D.; Buntinx, M.; Pierard, F.; Kirsch-De Mesmaeker, A.; Jacobs, P. Nature 1999, 400, 855.(h) Ashikari, Y.; Shimizu, A.; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2013, 135, 16070.

    6. [6]

      (a) Hajra, S.; Karmakar, A.; Bhowmick, M. Tetrahedron 2005, 61, 2279.(b) Schmid, G. H.; Gordon, J. W. J. Org. Chem. 1983, 48, 4010.(c) Mahajan, V. A.; Shinde, P. D.; Gajare, A. S.; Karthikeyan, M.; Wakharkar, R. D. Green Chem. 2002, 4, 325.(d) Barluenga, J.; Rodriguez, M. A.; Campos, P. J.; Asensio, G. J. Chem. Soc., Chem. Commun. 1987, 1491.

    7. [7]

      (a) Barluenga, J.; Gonzalez, J. M.; Campos, P. J.; Asensio, G. Angew. Chem. 1985, 97, 341.(b) Rao, D. S.; Reddy, T. R.; Babachary, K.; Kashyap, S. Org. Biomol. Chem. 2016, 14, 7529.

    8. [8]

      For selected reviews on enzyme-catalyzed oxidative halogenations, see:(a) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.(b) Wischang, D.; Brücher O.; Hartung, J. Coord. Chem. Rev. 2011, 255, 2204.(c) Lewis, J. C.; Coelho, P. S.; Arnold, F. H. Chem. Soc. Rev. 2011, 40, 2003.

    9. [9]

      (a) Agrawal, M. K.; Adimurthy, S.; Ganguly, B.; Ghosh, P. K. Tetrahedron 2009, 65, 2791.(b) Chakraborty, N.; Santra, S.; Kundu, S. K.; Hajra, A.; Zyryanov, G. V.; Majee, A. RSC Adv. 2015, 5, 56780.

    10. [10]

      (a) Barluenga, J.; Marco-Arias, M.; Gonzalez-Bobes, F.; Ballesteros, A.; Gonzalez, J. M. Chem.-Eur. J. 2004, 10, 1677.(b) Stavber, G.; Iskra, J.; Zupan, M.; Stavber, S. Adv. Synth. Catal. 2008, 350, 2921.

    11. [11]

    12. [12]

      (a) Omura, K.; Sharma, A. K.; Swern, D. J. Org. Chem. 1976, 41, 957.(b) Pfitzner, K. E.; Moffatt, J. G. J. Am. Chem. Soc. 1963, 85, 3027.(c) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1962, 84, 867.

    13. [13]

      (a) Song, S.; Huang, X.; Liang, Y.-F.; Yuan, Y.; Li, X.; Jiao, N. Green Chem. 2015, 17, 2727.(b) Tomita, R.; Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2014, 53, 7144.(c) Mupparapu, N.; Khan, S.; Battula, S.; Kushwaha, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R. A. Org. Lett. 2014, 16, 1152.(d) Wu, X.; Gao, Q.; Liu, S.; Wu, A. Org. Lett. 2014, 16, 2888.(e) Gao, Q.; Wu, X.; Liu, S.; Wu, A. Org. Lett. 2014, 16, 1732.(f) Ashikari, Y.; Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2011, 133, 11840.(g) Ashikari, Y.; Nokami, T.; Yoshida, J. Org. Lett. 2012, 14, 938.(h) Xu, R.; Wan, J.-P.; Mao, H.; Pan, Y. J. Am. Chem. Soc. 2010, 132, 15531.(i) Liang, Y.-F.; Wu, K.; Song, S.; Li, X.; Huang, X.; Jiao, N. Org. Lett. 2015, 17, 876.(j) Liang, Y.-F.; Li, X.; Wang, X.; Zou, M.; Tang, C.; Liang, Y.; Song, S.; Jiao, N. J. Am. Chem. Soc. 2016, 138, 12271.

    14. [14]

      (a) Jiang, X.; Wang, C.; Wei, Y.; Xue, D.; Liu, Z.; Xiao, J. Chem.-Eur. J. 2014, 20, 58.(b) Qian, J.; Zhang, Z.; Liu, Q.; Liu, T.; Zhang, G. Adv. Synth. Catal. 2014, 356, 3119.(c) Ren, X.; Chen, J.; Chen, F.; Cheng, J. Chem. Commun. 2011, 47, 6725.(d) Lv, Y.; Li, Y.; Xiong, T.; Pu, W.; Zhang, H.; Sun, K.; Liu, Q.; Zhang, Q. Chem. Commun. 2013, 49, 6439.(e) Wu, X.-F.; Natte, K. Adv. Synth. Catal. 2016, 358, 336.(f) Jones-Mensah, E.; Karki, M.; Magolan, J. Synthesis 2016, 48, 1421.(g) Shen, T.; Huang, X.; Liang, Y.-F.; Jiao, N. Org Lett. 2015, 17, 6186.

    15. [15]

      (a) Liu, F.-L.; Chen, J.-R.; Zou, Y.-Q.; Wei, Q.; Xiao, W.-J. Org. Lett. 2014, 16, 3768.(b) Mal, K.; Sharma, A.; Maulik, P. R.; Das, I. Chem.-Eur. J. 2014, 20, 662.(c) Gao, Q.; Wu, X.; Li, Y.; Liu, S.; Meng, X.; Wu, A. Adv. Synth. Catal. 2014, 356, 2924.(d) Chu, L.; Yue, X.; Qing, F.-L. Org. Lett. 2010, 12, 1644.(e) Yin, G.; Zhou, B.; Meng, X.; Wu, A.; Pan, Y. Org. Lett. 2006, 8, 2245.(f) Hu, G.; Xu, J.; Li, P. Org. Lett. 2014, 16, 6036.(g) Gao, X.; Pan, X.; Gao, J.; Huang, H.; Yuan, G.; Li, Y. Chem. Commun. 2015, 51, 210.(h) Jiang, Y.; Loh, T.-P. Chem. Sci. 2014, 5, 4939.(i) Gao, X.; Pan, X.; Gao, J.; Jiang, H.; Yuan, G.; Li, Y. Org. Lett. 2015, 17, 1038.

    16. [16]

      (a) Song, S.; Li, X.; Sun, X.; Yuan, Y.; Jiao, N. Green Chem. 2015, 17, 3285.(b) Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17, 2886.

    17. [17]

      (a) Gao, Q.; Liu, S.; Wu, X.; Wu, A. Org. Lett. 2014, 16, 4582.(b) Liu, S.; Xi, H.-L.; Zhang, J.-J.; Wu, X.; Gao, Q.-H.; Wu, A.-X. Org. Biomol. Chem. 2015, 13, 8807.(c) Gao, Q.; Zhang, J.; Wu, X.; Liu, S.; Wu, A. Org. Lett. 2015, 17, 134.(d) Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Org. Lett. 2015, 17, 2960.(e) Zhang, J.; Gao, Q.; Wu, X.; Geng, X.; Wu, Y.-D.; Wu, A. Org. Lett. 2016, 18, 1686.(f) Fan, W.; Yang, Z.; Jiang, B.; Li, G. Org. Chem. Front. 2017, 4, 1091.(g) Zhang, Z.; Xie, C.; Tan, X.; Song, G.; Wen, L.; Gao, H.; Ma, C. Org. Chem. Front. 2015, 2, 942.(h) Wu, W.; An, Y.; Li, J.; Yang, S.; Zhu, Z.; Jiang, H. Org. Chem. Front. 2017, 4, 1751.(i) Wu, Y.-D.; Geng, X.; Gao, Q.; Zhang, J.; Wu, X.; Wu, A.-X. Org. Chem. Front. 2016, 3, 1430.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    8. [8]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    9. [9]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    16. [16]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    20. [20]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

Metrics
  • PDF Downloads(24)
  • Abstract views(4556)
  • HTML views(1260)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return