Citation: Zhang Chengming, Pang Xin, Wang Yongzhao. Controllable Synthesis of One-dimensional Cryptomelane-type Manganese Dioxide and Its Electrochemical Performance[J]. Acta Chimica Sinica, ;2018, 76(2): 133-137. doi: 10.6023/A17090418 shu

Controllable Synthesis of One-dimensional Cryptomelane-type Manganese Dioxide and Its Electrochemical Performance

  • Corresponding author: Zhang Chengming, zhangchm@sxu.edu.cn
  • Received Date: 13 September 2017
    Available Online: 2 February 2018

Figures(8)

  • Cryptomelane-type manganese dioxide (OMS-2) is a very important nanomaterial in electrochemistry. Its intrinsic properties can be tailored by controlling shape or size. The diameter of one-dimensional OMS-2 nanomaterial is an important parameter in controllable synthesis and electrochemistry applications. Generally, the control of the diameter of one-dimensional OMS-2 nanomaterial can be realized by cosolvents or surfactants, even other special methods. In this paper, without any acid added, a series of one-dimensional OMS-2 nanomaterial with different diameters were synthesized by adjusting the ratio of potassium permanganate to manganese sulfate monohydrate in the aqueous solution with the conditional reflux method. The typical samples were characterized in detail by N2 adsorption-desorption analyses (BET), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM) and hydrogen temperature-programmed reduction (H2-TPR). The results reconfirmed that the growth of OMS-2 nanofibers and nanowires mainly followed the lateral attachment mechanism. The role of Oswald ripening in the growth of one-dimensional OMS-2 nanomaterials was making two or more primary thinner nanofibers or nanowires welded together. In the synthesis process, all the conditions were strictly controlled. The samples synthesized at low ratio of MnO4- to Mn2+ showed thinner and longer nanofibers or nanowires, and the samples synthesized at high ratio of MnO4- to Mn2+ exhibited higher diameter. Therefore, it can be concluded that MnO4- can promote the lateral growth of one-dimensional OMS-2 nanomaterials and Mn2+ tends to promote the longitudinal growth. In the electrochemical tests, when the ratio of potassium permanganate to manganese sulfate monohydrate increased from 0.15 to 1.80, the specific capacitance of one-dimensional OSM-2 nanomaterials decreased gradually. Therefore, the specific capacitance of one-dimensional OSM-2 nanomaterial was directly related to their diameters. The smaller the diameter is, the larger the capacitance is. The specific capacitance of MnO-15, MnO-45, MnO-112 and MnO-180 was 375, 230, 144 and 77 F/g, respectively. The result of galvanostatic charge and discharge of four samples at the current density of 1 A/g in 1 mol/L Na2SO4 solution was consistent with the cyclic voltammetry.
  • 加载中
    1. [1]

      Thenuwara, A. C.; Shumlas, S. L.; Attanayake, N. H.; Cerkez, E. B.; McKendry, I. G.; Frazer, L.; Borguet, E.; Kang, Q.; Zdilla, M. J.; Sun, J. Langmuir 2015, 31, 12807.  doi: 10.1021/acs.langmuir.5b02936

    2. [2]

      Liu, J.; Younesi, R.; Gustafsson, T.; Edström, K.; Zhu, J. Nano Energy 2014, 10, 19.  doi: 10.1016/j.nanoen.2014.08.022

    3. [3]

      Ran, F.; Fan, H.; Wang, L.; Zhao, L.; Tan, Y.; Zhang, X.; Kong, L.; Kang, L. J. Energ. Chem. 2013, 22, 928.  doi: 10.1016/S2095-4956(14)60274-6

    4. [4]

      Zhang, K.; Han, P.; Gu, L.; Zhang, L.; Liu, Z.; Kong, Q.; Zhang, C.; Dong, S.; Zhang, Z.; Yao, J.; Xu, H.; Cui, G.; Chen, L. ACS Appl. Mater. Interfaces 2012, 4, 658.  doi: 10.1021/am201173z

    5. [5]

      Hu, B.; Chen, C. H.; Frueh, S. J.; Jin, L.; Joesten, R.; Suib, S. L. J. Phys. Chem. C 2010, 114, 9835.  doi: 10.1021/jp100819a

    6. [6]

      Yang, C.; Gong, Z.; Zhao, W.; Yang, Y. Acta Chim. Sinica 2017, 75, 212 (in Chinese).  doi: 10.7503/cjcu20160458
       

    7. [7]

      Liu, L.; Qi, X.; Hu, Y.; Chen, L.; Huang, X. Acta Chim. Sinica 2017, 75, 218 (in Chinese).
       

    8. [8]

      Brock, S. L.; Duan, T. Z. R. Chem. Mater. 1998, 10, 2619.  doi: 10.1021/cm980227h

    9. [9]

      Su, Z.; Ye, S.; Wang, Y. Acta Chim. Sinica 2009, 67, 2413 (in Chinese).
       

    10. [10]

      Debart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2008, 47, 4521.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Nyutu, E. K.; Chen, C. H.; Sithambaram, S.; Crisostomo, V. M. B.; Suib, S. L. J. Phys. Chem. C 2008, 112, 6786.
       

    12. [12]

      Kumar, N.; Dineshkumar, P.; Rameshbabu, R.; Sen, A. Mater. Lett. 2015, 158, 309.  doi: 10.1016/j.matlet.2015.05.172

    13. [13]

      Sampanthar, J. T.; Dou, J.; Joo, G. G.; Widjaja, E.; Eunice, L. Q. H. Nanotechnology 2007, 18, 25601.  doi: 10.1088/0957-4484/18/2/025601

    14. [14]

      Xu, N.; Ma, X.; Qiao, S.; Yuan, J.; Liu, Z. Acta Chim. Sinica 2009, 67, 2566 (in Chinese).  doi: 10.3321/j.issn:0567-7351.2009.22.007
       

    15. [15]

      Hernández, W. Y.; Centeno, M. A.; Romero Sarria, F.; Ivanova, S.; Montes, M.; Odriozola, J. A. Catal. Today 2010, 157, 160.  doi: 10.1016/j.cattod.2010.03.010

    16. [16]

      Li, Y.; Wang, J.; Zhang, Y.; Banis, M. N.; Liu, J.; Geng, D.; Li, R.; Sun, X. J. Colloid. Interf. Sci. 2012, 369, 123.  doi: 10.1016/j.jcis.2011.12.013

    17. [17]

      Sun, H.; Liu, Z.; Chen, S.; Quan, X. Chem. Eng. J. 2015, 270, 58.  doi: 10.1016/j.cej.2015.02.017

    18. [18]

      Gao, T.; Glerup, M.; Krumeich, F.; Nesper, R.; Fjellv g, H.; Norby, P. J. Phys. Chem. C 2008, 112, 13134.  doi: 10.1021/jp804924f

    19. [19]

      Ananth, M. V.; Pethkar, S.; Dakshinamurthi, K. J. Power Sources 1998, 75, 278.  doi: 10.1016/S0378-7753(98)00100-1

    20. [20]

      Portehault, D.; Cassaignon, S.; Baudrin, E.; Jolivet, J. P. Chem. Mater. 2007, 19, 5410.  doi: 10.1021/cm071654a

    21. [21]

      Hou, J.; Liu, L.; Li, Y.; Mao, M.; Lv, H.; Zhao, X. Environ. Sci. Technol. 2013, 47, 13730.  doi: 10.1021/es403910s

    22. [22]

      Tang, W.; Shan, X.; Li, S.; Liu, H.; Wu, X.; Chen, Y. Mater. Lett. 2014, 132, 317.  doi: 10.1016/j.matlet.2014.05.211

    23. [23]

      Carno, J.; Ferrandon, M.; Bjrnbom, E.; Jaras, S. Appl. Catal. A: Gen. 1997, 155, 265.  doi: 10.1016/S0926-860X(97)80129-9

    24. [24]

      Ivanova, S.; Petit, C.; Pitchon, V. Appl. Catal. A: Gen. 2007, 267, 191.
       

    25. [25]

      Gac, W. Appl. Catal. B: Environ. 2007, 75, 107.  doi: 10.1016/j.apcatb.2007.04.002

    26. [26]

      Zhang, X.; Sun, X.; Zhang, H.; Li, C.; Ma, Y. Electrochim. Acta 2014, 132, 315.  doi: 10.1016/j.electacta.2014.03.176

    27. [27]

      Chai, C.; Liu, A.; Lv, Y.; Mu, J.; Zhang, X.; Che, H. Mater. Lett. 2017, 196, 308.  doi: 10.1016/j.matlet.2017.03.108

    28. [28]

      Wan, C.; Wang, L.; Shen, S.; Zhu, X. Acta Chim. Sinica 2009, 67, 1559 (in Chinese).
       

    29. [29]

      Dong, S.; Chen, X.; Gu, L.; Zhou, X.; Li, L.; Liu, Z.; Han, P.; Xu, H.; Yao, J.; Wang, H.; Zhang, X.; Shang, C.; Cui, G.; Chen, L. Energy Environ. Sci. 2011, 4, 3502.  doi: 10.1039/c1ee01399h

  • 加载中
    1. [1]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    4. [4]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    7. [7]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    14. [14]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

Metrics
  • PDF Downloads(6)
  • Abstract views(2104)
  • HTML views(441)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return