Citation: Zhang Zi-Jing, Tao Zhong-Lin, Arafate Adele, Gong Liu-Zhu. Asymmetric Carbonyl Allylation of Aldehydes with Allylic Alcohols under the Sequential Catalysis of Palladium Complex and Chiral Phosphoric Acid[J]. Acta Chimica Sinica, ;2017, 75(12): 1196-1201. doi: 10.6023/A17080372 shu

Asymmetric Carbonyl Allylation of Aldehydes with Allylic Alcohols under the Sequential Catalysis of Palladium Complex and Chiral Phosphoric Acid

  • Corresponding author: Gong Liu-Zhu, gonglz@ustc.edu.cn
  • Received Date: 14 August 2017
    Available Online: 9 December 2017

    Fund Project: the National Natural Science Foundation of China 21232007Project supported by the National Natural Science Foundation of China (No. 21232007)

Figures(3)

  • The asymmetric carbonyl allylation of aldehydes with allylmetal reagents presents one of the most efficient and straightforward methods for the synthesis of optically active homoallylic alcohols, which have found widespread applications in organic synthesis. As such, a wide range of chiral catalysts, including Lewis acids, Lewis bases and Br nsted acids have been reported to enable highly stereoselective carbonyl allylation of aldehydes with allylmetal reagents. Among them, chiral phosphoric acid-catalyzed carbonyl allylation of aldehydes with pinacol allylboronates represents a promising method, whereas an additional operations required for the preparation of allylboronates from allyl halides or highly active allylmetallics impose some constraints on the carbonyl allylation process. In this context, the asymmetric addition of allylboronates, in situ generated from palladium-catalyzed allylborylation, to aldehydes has been reported, while stoichiometric amounts of chiral diboronate reagents are basically required. Allylic alcohols are readily available feedstock. The direct use of allylic alcohols as starting materials in asymmetric allylborylation of carbonyls is highly valuable. Herein, we will report an asymmetric carbonyl allylation of aldehydes with allylic alcohols in the presence of octamethyl-2, 2'-bi(1, 3, 2-dioxaborolane) under the sequential catalysis of a palladium complex and chiral phosphoric acid. The presence of 2.5 mol% (η3-C3H5)2Pd2Cl2, 5 mol% P(OPh)3 and 10 mol% chiral phosphoric acid B*H-1 enabled 4-nitrobenzaldehyde 2a to smoothly undergo the asymmetric carbonyl allylation reaction with 2-buten-1-ol 1a and octamethyl-2, 2'-bi(1, 3, 2-dioxaborolane), giving rise to the desired homoallylic alcohol product 3aa in a 99% yield and with >20:1 dr and 92% ee. Under the optimal conditions, the generality for allylic alcohol substrates was investigated to reveal that the installation of either of saturated alkyl substituents, carbon-carbon double bond or heteroatom group in the allylic alcohols allowed the target products (3ca~3fa, 3ha~3ja) to be obtained in high yields and with excellent stereoselectivities. A (Z)-allylic alcohol and branched allylic alcohols were also able to generate the target products (3ba, 3ga), successfully. Although cinnamic alcohols participated in a clean reaction, relatively lower yields and stereoselectivity were delivered (3ka and 3la). The examination of aldehydes suggested that the introduction of either electronically deficient or rich substituents to the benzene ring of benzaldehydes was tolerant and led to corresponding homoallylic alcohols in excellent yields and stereoselectivities (3ab~3ak and 3m), with the exception of o-anisaldehyde (3al). In addition, 2-naphthaldehyde, aliphatic aldehydes and enals are all good substrates and provide high yields and enantiomeric excesses as exemplified by 3-phenylpropanal and 4-methoxycinnamaldehyde (3an~3ap).
  • 加载中
    1. [1]

      (a) Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry, Ed.: Otera, J., Wiley-VCH, Weinheim, Germany, 2000, pp. 403~490; (b) Elford, T. G.; Hall, D. G. Synthesis 2010, 893;(c) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595.

    2. [2]

      (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207;(b) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763;(c) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774.

    3. [3]

      For examples with chiral Lewis acids as catalysts, see:(a) Furuta, K.; Mouri, M.; Yamamoto, H. Synlett 1991, 561;(b) Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001;(c) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467;(d) Ishiyama, T.; Ahiko, T.-A.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 12414;(e) Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8910.

    4. [4]

    5. [5]

      For examples with chiral Br nsted acids as catalysts, see:(a) Rauniyar, V.; Hall, D. G. Angew. Chem., Int. Ed. 2006, 45, 2426;(b) Rauniyar, V.; Zhai, H.; Hall, D. G. J. Am. Chem. Soc. 2008, 130, 8481;(c) Rauniyar, V.; Hall, D. G. J. Org. Chem. 2009, 74, 4236;(d) Jain, P.; Antilla, J. C. J. Am. Chem. Soc. 2010, 132, 11884;(e) Xing, C.-H.; Liao, Y.-X.; Zhang, Y.; Sabarova, D.; Bassous, M.; Hu, Q.-S. Eur. J. Org. Chem. 2012, 1115.

    6. [6]

      For other examples of asymmetric carbonyl allylation reactions, see:(a) Kim, I. S.; Ngai, M.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891;(b) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2006, 128, 12660;(c) Barnett, D. S.; Moquist, P. N.; Schaus, S. E. Angew. Chem., Int. Ed. 2009, 48, 8679.

    7. [7]

      For the selected achiral examples, see:(a) Sebelius, S.; Wallner, O. A.; Szabó, K. J. Org. Lett. 2003, 5, 3065;(b) Selander, N.; Sebelius, S.; Estay, C.; Szabó, K. J. Eur. J. Org. Chem. 2006, 4085;(c) Se-lander, N.; Kipke, A.; Sebelius, S.; Szabó, K. J. J. Am. Chem. Soc. 2007, 129, 13723;(d) Olsson, V. J.; Szabó, K. J. Angew. Chem., Int. Ed. 2007, 46, 6891;(e) Selander, N.; Szabó, K. J. Chem. Commun. 2008, 3420;(f) Zhou, Y.-H.; Wang, H.; Liu, Y.; Zhao, Y.-L.; Zhang, C.-X.; Qu, J.-P. Org. Chem. Front. 2017, 4, 1580.

    8. [8]

      For the examples of using chiral diboronates, see:(a) Sebelius, S.; Szabó, K. J. Eur. J. Org. Chem. 2005, 2539;(b) Vogt, M.; Ceylan, S.; Kirschning, A. Tetrahedron 2010, 66, 6450.

    9. [9]

    10. [10]

      (a) Zhu, S.-F.; Qiao, X.-C.; Zhang, Y.-Z.; Wang, L.-X.; Zhou, Q.-L. Chem. Sci. 2011, 2, 1135;(b) Tsukamoto, H.; Kawase, A.; Doi, T. Chem. Commun. 2015, 51, 8027.

    11. [11]

      Yatagai, M.; Yamagishi, T.; Hida, M. Bull. Chem. Soc. Jpn. 1984, 57, 823.(b) McIntosh, J. M.; Leavitt, R. K. Tetrahedron Lett. 1986, 27, 3839.(c) Jiang, Y. Z.; Liu, G.; Zhou, C. Y.; Piao, H. R.; Wu, L. J.; Mi, A. Q. Synth. Commun. 1991, 21, 1087.

    12. [12]

    13. [13]

      (a) Grayson, M. N.; Pellegrinet, S. C.; Goodman, J. M. J. Am. Chem. Soc. 2012, 134, 2716.(b) Wang, H.; Jain, P.; Antilla, J. C.; Houk, K. N. J. Org. Chem. 2013, 78, 1208.(c) Incerti-Pradillos, C. A.; Kabeshov, M. A.; Malkov, A. V. Angew. Chem., Int. Ed. 2013, 52, 5338.

    14. [14]

    15. [15]

      Jiang, G.-X.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471.  doi: 10.1002/anie.v50.40

    16. [16]

      Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Arafate Adele; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255.  doi: 10.1021/ja402740q

  • 加载中
    1. [1]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    2. [2]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    9. [9]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    16. [16]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

Metrics
  • PDF Downloads(11)
  • Abstract views(881)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return