Citation: Qin Tianyi, Zeng Yi, Chen Jinping, Yu Tianjun, Li Yi. Progress in Organic Fluorescent Thermometers[J]. Acta Chimica Sinica, ;2017, 75(12): 1164-1172. doi: 10.6023/A17070341 shu

Progress in Organic Fluorescent Thermometers

  • Corresponding author: Zeng Yi, yili@mail.ipc.ac.cn Li Yi, zengyi@mail.ipc.ac.cn
  • Received Date: 27 July 2017
    Available Online: 28 December 2017

    Fund Project: the 973 Program 2013CB834703the 973 Program 2013CB834505the National Natural Science Foundation of China 21233011Project supported by the National Natural Science Foundation of China (No. 21233011) and the 973 Program (Nos. 2013CB834703 and 2013CB834505)

Figures(13)

  • Temperature is a basic physical parameter. Accurate measurement of temperature is of importance to scientific research and to industry production and life. Fluorescent temperature sensing, as a new method for temperature measurement, has received much attention because of its high resolution, fast response and observation with bear eyes, etc. Organic fluorescence probes are firstly used in fluorescent temperature sensing due to the versatility of structures, easier modification, and the consequent multiple spectral responses. The fluorescent thermometers can be applied in the temperature sensing of large area, microfluids, biological systems and so on, which make them attractive in the field of fluorescent probes research. In recent years, fluorescent thermometers based on organic fluorescence probes have made remarkable progress. Two major kinds of organic fluorescence thermometers are classified in this review based on the response of fluorescence wavelength, one is the single-wavelength response type, and the other is the ratiometric one. For the single-wavelength type, there are thermal-quenching and thermal-enhancing fluorescence thermometers based on the temperature-dependent trend of emission intensity. At the earlier stage, organic chromophores with high fluorescence quantum yields are adopted as the thermal quenching fluorescence thermometer, and recently a series of conformation-regulated organic thermometers based on dendritic structure and aggregation-induced emission chromophore was developed. Thermal response macromolecules including PNIPAM, PEG and DNA are widely used to create thermal responsive microenvironment to regulate chromophore emission, and then develop thermal-enhancing fluorescence thermometers. Ratiometric fluorescence thermometers show better sensitivity and accuracy than single-wavelength ones due to their self-correction property based on the different thermal-response of emission at two wavelengths. Several kinds of ratiometric sensing systems have been developed, which are based on dye-copolymerized/doped polymer systems, monomer-excimer ratiometric emission, chromophores with thermal transition of local excited state and twisted intramolecular charge transfer state, and chromophores with thermal-induced crystal transfer. In this review, recent advances of organic fluorescence thermometers mentioned above will be presented and the challenges and the future development will be discussed.
  • 加载中
    1. [1]

      Kennedy, J. J. Rev Geophys. 2014, 52, 1.  doi: 10.1002/rog.v52.1

    2. [2]

      Ross-Pinnock, D.; Maropoulos, P. G. Proc. Inst. Mech. Eng. B 2016, 230, 793.

    3. [3]

      Rolls, K.; Armstrong, K.; Keating, L.; Wrightson, D.; Walker, S.; Masters, J. Aust. Crit. Care 2014, 27, 49.

    4. [4]

      Sarua, A.; Ji, H. F.; Kuball, M.; Uren, M. J.; Martin, T.; Hilton, K. P.; Balmer, R. S. IEEE T Electron. Dev. 2006, 53, 2438.  doi: 10.1109/TED.2006.882274

    5. [5]

      Ring, E. F. J. Infrared Phys. Technol. 2007, 49, 297.  doi: 10.1016/j.infrared.2006.06.029

    6. [6]

      Lira, I.; Santos, P. R. Metrologia 1999, 36, 415.  doi: 10.1088/0026-1394/36/5/3

    7. [7]

      Klason, P.; Holmsten, M.; Andersson, A.; Lau, P.; Kok, G. J. P. Temperature: Its Measurement and Control in Science and Industry, Vol. 8, AIP Publishing, Los Angeles, California, USA, 2013, p. 987.

    8. [8]

      Revil, A.; Meyer, C. D.; Niu, Q. Geophysics 2016, 81, E243.  doi: 10.1190/geo2015-0281.1

    9. [9]

      Bennet, M. A.; Richardson, P. R.; Arlt, J.; McCarthy, A.; Buller, G. S.; Jones, A. C. Lab Chip 2011, 11, 3821.  doi: 10.1039/c1lc20391f

    10. [10]

      Marciniak, L.; Bednarkiewicz, A.; Kowalska, D.; Strek, W. J. Mater. Chem. C 2016, 4, 5559.  doi: 10.1039/C6TC01484D

    11. [11]

      Lou, J. F.; Finegan, T. M.; Mohsen, P.; Hatton, T. A.; Laibinis, P. E. Rev. Anal. Chem. 1999, 18, 235.

    12. [12]

      Song, Q. S.; Zhou, W.; Wu, X. M.; Wu, F. Acta Chim. Sinica 2016, 74, 435.
       

    13. [13]

      Wang, X. D.; Song, X. H.; He, C. Y.; Yang, C. J.; Chen, G. N.; Chen, X. Anal. Chem. 2011, 83, 2434.  doi: 10.1021/ac200196y

    14. [14]

      Vlaskin, V. A.; Janssen, N.; van Rijssel, J.; Beaulac, R.; Gamelin, D. R. Nano Lett. 2010, 10, 3670.  doi: 10.1021/nl102135k

    15. [15]

      Barilero, T.; Le Saux, T.; Gosse, C.; Jullien, L. Anal. Chem. 2009, 81, 7988.  doi: 10.1021/ac901027f

    16. [16]

      McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Chem. Mater. 2013, 25, 1283.  doi: 10.1021/cm304034s

    17. [17]

      Gosse, C.; Bergaud, C.; Low, P. Top Appl. Phys. 2009, 118, 301.  doi: 10.1007/978-3-642-04258-4

    18. [18]

      Heyes, A. L.; Seefeldt, S.; Feist, J. P. Opt. Laser Technol. 2006, 38, 257.  doi: 10.1016/j.optlastec.2005.06.012

    19. [19]

      Ishiwada, N.; Ueda, T.; Yokomori, T. Luminescence 2011, 26, 381.  doi: 10.1002/bio.v26.6

    20. [20]

      Cao, C.; Liu, X. G.; Qiao, Q. L.; Zhao, M.; Yin, W. T.; Mao, D. Q.; Zhang, H.; Xu, Z. C. Chem. Commun. 2014, 50, 15811.  doi: 10.1039/C4CC08010F

    21. [21]

      Hsia, C. H.; Wuttig, A.; Yang, H. ACS Nano 2011, 5, 9511.  doi: 10.1021/nn2025622

    22. [22]

      Haro-Gonzalez, P.; Martinez-Maestro, L.; Martin, I. R.; Garcia-Sole, J.; Jaque, D. Small 2012, 8, 2652.  doi: 10.1002/smll.v8.17

    23. [23]

      Kalytchuk, S.; Polakova, K.; Wang, Y.; Froning, J. P.; Cepe, K.; Rogach, A. L.; Zboril, R. ACS Nano 2017, 11, 1432.  doi: 10.1021/acsnano.6b06670

    24. [24]

      Li, H.; Zhang, Y. D.; Shao, L.; Htwe, Z.; Yuan, P. Opt. Mater. Express 2017, 7, 1077.  doi: 10.1364/OME.7.001077

    25. [25]

      Deepankumar, K.; Nadarajan, S. P.; Bae, D. H.; Baek, K. H.; Choi, K. Y.; Yun, H. Biotechnol. Bioproc. E 2015, 20, 67.  doi: 10.1007/s12257-014-0456-z

    26. [26]

      Wang, X. D.; Wolfbeis, O. S.; Meier, R. J. Chem. Soc. Rev. 2013, 42, 7834.  doi: 10.1039/c3cs60102a

    27. [27]

      Low, P.; Kim, B.; Takama, N.; Bergaud, C. Small 2008, 4, 908.  doi: 10.1002/smll.v4:7

    28. [28]

      Jung, W.; Kim, Y. W.; Yim, D.; Yoo, J. Y. Sensor Actuators, A-Phys. 2011, 171, 228.  doi: 10.1016/j.sna.2011.06.025

    29. [29]

      Guan, X. L.; Liu, X. Y.; Su, Z. X.; Liu, P. React. Funct. Polym. 2006, 66, 1227.  doi: 10.1016/j.reactfunctpolym.2006.03.005

    30. [30]

      Chapman, C. F.; Liu, Y.; Sonek, G. J.; Tromberg, B. J. Photochem. Photobiol. 1995, 62, 416.  doi: 10.1111/php.1995.62.issue-3

    31. [31]

      Pais, V. F.; Lassaletta, J. M.; Fernandez, R.; El-Sheshtawy, H. S.; Ros, A.; Pischel, U. Chem.-Eur. J. 2014, 20, 7638.  doi: 10.1002/chem.201402027

    32. [32]

      Zeng, Y.; Li, P.; Liu, X. Y.; Yu, T. J.; Chen, J. P.; Yang, G. Q.; Li, Y. Polym. Chem.-UK 2014, 5, 5978.  doi: 10.1039/C4PY00714J

    33. [33]

      Arai, S.; Lee, S. C.; Zhai, D. T.; Suzuki, M.; Chang, Y. T. Sci. Rep.-UK 2014, 4, 6701.

    34. [34]

      Arai, S.; Suzuki, M.; Park, S. J.; Yoo, J. S.; Wang, L.; Kang, N. Y.; Ha, H. H.; Chang, Y. T. Chem. Commun. 2015, 51, 8044.  doi: 10.1039/C5CC01088H

    35. [35]

      Wang, H.; Wu, Y. Q.; Tao, P.; Fan, X.; Kuang, G. C. Chem.-Eur. J. 2014, 20, 16634.  doi: 10.1002/chem.201404292

    36. [36]

      Wang, H.; Wu, Y. Q.; Shi, Y. L.; Tao, P.; Fan, X.; Su, X. Y.; Kuang, G. C. Chem.-Eur. J. 2015, 21, 3219.  doi: 10.1002/chem.v21.8

    37. [37]

      Ke, G. L.; Wang, C. M.; Ge, Y.; Zheng, N. F.; Zhu, Z.; Yang, C. J. J. Am. Chem. Soc. 2012, 134, 18908.  doi: 10.1021/ja3082439

    38. [38]

      Ebrahimi, S.; Akhlaghi, Y.; Kompany-Zareh, M.; Rinnan, A. ACS Nano 2014, 8, 10372.  doi: 10.1021/nn5036944

    39. [39]

      Guo, Y. Z.; Yu, X.; Xue, W. W.; Huang, S. S.; Dong, J.; Wei, L. H.; Maroncelli, M.; Li, H. P. Chem. Eng. J. 2014, 240, 319.  doi: 10.1016/j.cej.2013.11.081

    40. [40]

      Zhou, H.; Liu, F.; Wang, X. B.; Yan, H.; Song, J.; Ye, Q.; Tang, B. Z.; Xu, J. W. J. Mater. Chem. C 2015, 3, 5490.  doi: 10.1039/C5TC00752F

    41. [41]

      Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. Anal. Chem. 2003, 75, 5926.  doi: 10.1021/ac0346914

    42. [42]

      Shiraishi, Y.; Miyarnoto, R.; Hirai, T. Langmuir 2008, 24, 4273.  doi: 10.1021/la703890n

    43. [43]

      Coppeta, J.; Rogers, C. Exp. Fluids 1998, 25, 1.  doi: 10.1007/s003480050202

    44. [44]

      Chen, C. Y.; Chen, C. T. Chem. Commun. 2011, 47, 994.  doi: 10.1039/C0CC04450D

    45. [45]

      Brites, C. D. S.; Lima, P. P.; Silva, N. J. O.; Millan, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Nanoscale 2012, 4, 4799.  doi: 10.1039/c2nr30663h

    46. [46]

      Qiao, J.; Chen, C. F.; Qi, L.; Liu, M. R.; Dong, P.; Jiang, Q.; Yang, X. Z.; Mu, X. Y.; Mao, L. Q. J. Mater. Chem. B 2014, 2, 7544.  doi: 10.1039/C4TB01154F

    47. [47]

      Uchiyama, S.; Tsuji, T.; Ikado, K.; Yoshida, A.; Kawamoto, K.; Hayashi, T.; Inada, N. Analyst 2015, 140, 4498.  doi: 10.1039/C5AN00420A

    48. [48]

      Wu, Y. S.; Liu, J. J.; Ma, J. W.; Liu, Y. C.; Wang, Y.; Wu, D. C. ACS Appl. Mater. Interfaces 2016, 8, 14396.  doi: 10.1021/acsami.6b03366

    49. [49]

      Ito, A.; Ishizaka, S.; Kitamura, N. Phys. Chem. Chem. Phys. 2010, 12, 6641.  doi: 10.1039/b924176k

    50. [50]

      Braun, D.; Rettig, W. Chem. Phys. 1994, 180, 231.  doi: 10.1016/0301-0104(93)E0423-S

    51. [51]

      Xia, T. K.; Wang, L. L.; Qu, Y.; Rui, Y. C.; Cao, J.; Hu, Y.; Yang, J.; Wu, J. W.; Xu, J. L. J. Mater. Chem. C 2016, 4, 5696.  doi: 10.1039/C6TC01241H

    52. [52]

      Feng, J.; Tian, K. J.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Zeng, Y.; Li, Y.; Yang, G. Q. A. Angew. Chem., Int. Ed. 2011, 50, 8072.  doi: 10.1002/anie.v50.35

    53. [53]

      Feng, J.; Xiong, L.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Adv. Func. Mater. 2013, 23, 340.  doi: 10.1002/adfm.201201712

    54. [54]

      Liu, J.; Guo, X. D.; Hu, R.; Xu, J.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. Anal. Chem. 2015, 87, 3694.  doi: 10.1021/acs.analchem.5b00887

    55. [55]

      Liu, X.; Li, S. Y.; Feng, J.; Li, Y.; Yang, G. Q. Chem. Commun. 2014, 50, 2778.  doi: 10.1039/C3CC49147A

    56. [56]

      Lou, J. F.; Hatton, T. A.; Laibinis, P. E. Anal. Chem. 1997, 69, 1262.  doi: 10.1021/ac960745g

    57. [57]

      Kaushlendra, K.; Asha, S. K. J. Phys. Chem. B 2014, 118, 4951.  doi: 10.1021/jp501346b

    58. [58]

      Zeng, Y.; Li, Y. Y.; Li, M.; Yang, G. Q.; Li, Y. J. Am. Chem. Soc. 2009, 131, 9100.  doi: 10.1021/ja902998g

    59. [59]

      Qin, T. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Li, Y. Acta Chim. Sinica 2017, 75, 99.
       

    60. [60]

      Mutai, T.; Satou, H.; Araki, K. Nat. Mater. 2005, 4, 685.  doi: 10.1038/nmat1454

    61. [61]

      Zhang, X. Q.; Chi, Z. G.; Xu, B. J.; Jiang, L.; Zhou, X.; Zhang, Y.; Liu, S. W.; Xu, J. R. Chem. Commun. 2012, 48, 10895.  doi: 10.1039/c2cc36263e

    62. [62]

      Zhu, Q. H.; Yang, W. J.; Zheng, S. C.; Sung, H. H. Y.; Williams, I. D.; Liu, S. W.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 7383.  doi: 10.1039/C6TC01887D

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    3. [3]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    4. [4]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    5. [5]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    10. [10]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    17. [17]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

Metrics
  • PDF Downloads(75)
  • Abstract views(2891)
  • HTML views(674)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return