Citation: Duo Huanhuan, Liu Yanling, Wang Yawen, Tang Yun, Huang Weihua. Photocatalytically Renewable Electrode for On-Line Regeneration under Visible Light Irradiation and Real-Time Monitoring of Living Cells[J]. Acta Chimica Sinica, ;2017, 75(11): 1091-1096. doi: 10.6023/A17070330 shu

Photocatalytically Renewable Electrode for On-Line Regeneration under Visible Light Irradiation and Real-Time Monitoring of Living Cells

  • Corresponding author: Huang Weihua, whhuang@whu.edu.cn
  • Received Date: 22 July 2017
    Available Online: 25 November 2017

    Fund Project: the National Natural Science Foundation of China 21675121the National Natural Science Foundation of China 21375099Project supported by the National Natural Science Foundation of China (Nos. 21375099, 21675121)

Figures(5)

  • Electrode fouling and passivation is an inevitable problem which seriously affects the electrode performance in cell culture and detection. Construction of photocatalytically renewable electrode by combination of nanophotocatalysts with electrochemical sensing materials could provide a promising approach for highly efficient renewal of electrode surface without damaging its micro-or nanostructures. However, the reactive oxygen species generated during photocatalysis always cause damages to cells being adhered or cultured on the electrode surface, which precludes on-line renewal of electrode during cell culture and detection. To address this issue, based on the visible light-induced renewable electrode (poly(3, 4-ethylenedioxythiophene) (PEDOT)-modified TiO2/CdS nanocomposites electrode we previously developed, a thin layer of gelatin hydrogel was spin-coated on the electrode in this work to realize efficient electrode renewal under visible light irradiation during the culture and detection of living cells. The optimized thickness (ca. 2 μm) of gelatin hydrogel was obtained by spin-coating under 3000 r/min. Benefitting from the network structure of gelatin hydrogel and the renewable performance of PEDOT@CdS/TiO2 nanocomposites, the gelatin coating efficiently blocked the diffusion of biomacromolecules from the bulk medium to the electrode surface and thus significantly diminished the fouling caused by these macromolecules, while the pollutants derived from small molecules could be efficiently degraded under visible light irradiation. Meanwhile, gelatin coating did not induce obviously decline in detection sensitivity, and a low detection limit of 4.2 nmol/L (S/N=3) could be obtained towards electrochemical detection of nitric oxide (NO). Most importantly, the gelatin layer efficiently blocked the ultrashort-lived but highly reactive oxygen species such as OH·(generated by photocatalytic process) diffusing from the electrode surface to the cells, and the damages to the cells caused by these highly reactive species could be therefore significantly decreased. The results from live/dead cell staining demonstrated that almost all the cells (>95%) cultured on gelatin-coated electrodes maintain their viability when the electrode was irradiated by visible light for 6 h, while a considerable part of cells (>40%) culture on the uncoated electrode lost their viability under the same conditions. These features allowed on-line renewal of the electrode during cell culture and detection as well as real-time monitoring of NO released from the human umbilical vein endothelial cells (HUVECs).
  • 加载中
    1. [1]

      Lin, M. H.; Song, P.; Zhou, G. B.; Zuo, X. L.; Aldalbahi, A.; Lou, X. D.; Shi, J.; Fan, C. Nat. Protoc. 2016, 11, 1244.  doi: 10.1038/nprot.2016.071

    2. [2]

      Yan, X. Y.; Gu, Y.; Li, C.; Liu, T.; Zheng, B.; Li, Y.; Zhang, Z. Q.; Yang, M. Biosens. Bioelectron. 2016, 77, 1032.  doi: 10.1016/j.bios.2015.10.085

    3. [3]

      Bai, R. G.; Muthoosamy, K.; Zhou, M. F.; Ashokkumar, M.; Huang, N. M.; Manickam, S. Biosens. Bioelectron. 2017, 87, 622.  doi: 10.1016/j.bios.2016.09.003

    4. [4]

      Tang, C. K.; Vaze, A.; Shen, M.; Rusling, J. F. ACS Sens. 2016, 1, 1036.  doi: 10.1021/acssensors.6b00256

    5. [5]

      Yang, Z. Y.; Ma, W.; Ying, Y. L.; Long, Y. T. Acta Chim. Sinica 2017, 75, 671(in Chinese).
       

    6. [6]

      Zhou, W. D.; Mahshid, S. S.; Wang, W. J.; Vallee-Belisle, A.; Zandstra, P. W.; Sargent, E. H.; Kelley, S. O. ACS Sens. 2017, 2, 495.  doi: 10.1021/acssensors.7b00136

    7. [7]

      Lin, X. Y.; Zhang, B. W.; Yang, Q.; Yan, F.; Hua, X.; Su, B. Anal. Chem. 2016, 88, 7821.  doi: 10.1021/acs.analchem.6b01866

    8. [8]

      Hui, N.; Sun, X. T.; Niu, S. Y.; Luo, X. L. ACS Appl. Mater. Interfaces 2017, 9, 2914.  doi: 10.1021/acsami.6b11682

    9. [9]

      Lee, J.; Arrigan, D. W. M.; Silvester, D. S. Anal. Chem. 2016, 88, 5104.  doi: 10.1021/acs.analchem.5b04782

    10. [10]

      Bhalla, V.; Carrara, S.; Stagni, C.; Samorì, B. Thin Solid Films 2010, 518, 3360.  doi: 10.1016/j.tsf.2009.10.022

    11. [11]

      Duan, W.; Ronen, A.; Walker, S.; Jassby, D. ACS Appl. Mater. Interfaces 2016, 8, 22574.  doi: 10.1021/acsami.6b07196

    12. [12]

      Hu, L. S.; Huo, K. F.; Chen, R. S.; Gao, B.; Fu, J. J.; Chu, P. K. Anal. Chem. 2011, 83, 8138.  doi: 10.1021/ac201639m

    13. [13]

      Guo, C. Y.; Huo, H. H.; Han, X.; Xu, C. L.; Li, H. L. Anal. Chem. 2014, 86, 876.  doi: 10.1021/ac4034467

    14. [14]

      Xu, J. Q.; Liu, Y. L.; Wang, Q.; Duo, H. H.; Zhang, X. W.; Li, Y. T.; Huan, W. H. Angew. Chem., Int. Ed. 2015, 54, 14402.  doi: 10.1002/anie.201507354

    15. [15]

      Duo, H. H.; Xu, J. Q.; Liu, Y. L.; Jin, Z. H.; Hu, X. B.; Huang, W. H. J. Electroanal. Chem. 2016, 781, 371.  doi: 10.1016/j.jelechem.2016.06.046

    16. [16]

      Xu, J. Q.; Duo, H. H.; Zhang, Y. G.; Zhang, X. W.; Fang, W.; Liu, Y. L.; Shen, A. G.; Hu, J. M.; Huang, W. H. Anal. Chem. 2016, 88, 3789.  doi: 10.1021/acs.analchem.5b04810

    17. [17]

      Atsumi, T.; Murata, J.; Kamiyanagi, I.; Fujisawa, S.; Ueha, T. Arch. Oral. Biol. 1998, 43, 73.  doi: 10.1016/S0003-9969(97)00073-3

    18. [18]

      Ferancová, A.; Rengaraj, S.; Kim, Y.; Labuda, J.; Sillanpää, M. Biosens. Bioelectron. 2010, 26, 314.  doi: 10.1016/j.bios.2010.08.026

    19. [19]

      Xu, F.; Zha, Y. P.; Wang, G. X.; Wang, Y.; Li, J. L. Acta Chim. Sinica 2009, 67, 957(in Chinese).  doi: 10.3321/j.issn:0567-7351.2009.09.012
       

    20. [20]

      Chen, A.; Zhou, M. Free Radical and Aging (Second Edition), People's Medical Publishing House, Beijing, 2011(in Chinese).

    21. [21]

      Zhu, A. W.; Liu, Y.; Rui, Q.; Tian, Y. Chem. Commun. 2011, 47, 4279.  doi: 10.1039/c0cc05821a

    22. [22]

      Zhuang, M.; Ding, C. Q.; Zhu, A. W.; Tian, Y. Anal. Chem. 2016, 86, 1829.

    23. [23]

      Li, L.; Zhu, A.; Tian, Y. Chem. Commun. 2013, 49, 1279.  doi: 10.1039/c2cc38339j

    24. [24]

      Liu, Y.; Chan-Park, M. B. Biomaterials 2010, 83, 1158.

    25. [25]

      Caliari, S. R.; Burdick, J. A. Nat. Methods 2016, 13, 405.  doi: 10.1038/nmeth.3839

    26. [26]

      Yu, P.; Zhou, H.; Cheng, H.; Qian, Q.; Mao, L. Q. Anal. Chem. 2011, 83, 5715.  doi: 10.1021/ac200942a

    27. [27]

      Privett, B. J.; Shin, J. H.; Schoenfisch, M. H. Chem. Soc. Rev. 2010, 39, 1925.  doi: 10.1039/b701906h

    28. [28]

      Coneski, P. N.; Schoenfisch, M. H. Chem. Soc. Rev. 2012, 41, 3753.  doi: 10.1039/c2cs15271a

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    3. [3]

      Wei Huang Weiwei Chen Yongxing Tang . Green Mountains and Blue Waters Spanning Nine Centuries: Decrypting “The Picture of a Thousand Miles of Rivers and Mountains” from a Chemical Perspective. University Chemistry, 2024, 39(9): 189-195. doi: 10.12461/PKU.DXHX202312075

    4. [4]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(7)
  • Abstract views(2853)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return