Citation: Song Congying, Sun Xun, Ye Ke, Zhu Kai, Cheng Kui, Yan Jun, Cao Dianxue, Wang Guiling. Electrocatalytic Activity of MnO2 Supported on Reduced Graphene Oxide Modified Ni Foam for H2O2 Reduction[J]. Acta Chimica Sinica, ;2017, 75(10): 1003-1009. doi: 10.6023/A17070298 shu

Electrocatalytic Activity of MnO2 Supported on Reduced Graphene Oxide Modified Ni Foam for H2O2 Reduction

  • Corresponding author: Wang Guiling, wangguiling@hrbeu.edu.cn
  • Received Date: 4 July 2017
    Available Online: 4 October 2017

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 51572052)the National Natural Science Foundation of China 51572052

Figures(9)

  • Fuel cells which use hydrogen peroxide as oxidant have been widely studied and presents good development foreground. As a liquid fuel, H2O2 possesses advantages of easily storage and transportation which make it can be widely used in underwater and space as a power source. At present, the most widely used catalysts for H2O2 electroreduction are noble metal catalysts. Compared with noble metals, transition metal oxides possess advantages of low cost and extensive sources. However, the catalytic activity of transition metal oxides is still much lower than noble metals. Therefore, many efforts should be made to improve the electrochemical performance of transition metal oxides. In this work, rGO is used as an additive to improve the electrochemcial performance of MnO2. An original electrode of MnO2 in-situ supported on reduced graphene oxide modified Ni foam (MnO2/rGO@Ni foam) is prepared through two-step hydrothermal methods. Primarily, the novel current collector of rGO@Ni foam is obtained with larger surface area which is beneficial to the next loading of MnO2. Secondly, MnO2 is grown on the rGO@Ni foam also by a hydrothermal treatment. Besides large surface area, the addition of rGO can provide more channels for electron transfer and then accelerate the reaction rate of H2O2 reduction. The morphology and phase composition of the as-prepared electrode are investigated by measurements of X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). It can be concluded from SEM and TEM images, both rGO and MnO2 exhibit sheet-like structure and there are many gaps existing between these sheets. Especially, the as-prepared MnO2 nanosheets builds a honeycomb structure which makes positive effects on the contact between H2O2 and catalyst. And XRD and HRTEM results show that MnO2 and rGO are successfully prepared on Ni foam. The electrochemical performance of the MnO2/rGO@Ni foam electrode toward H2O2 reduction is investigated by cyclic voltammetry and chronoamperometry in a three-electrode system in solutions of NaOH and H2O2. Results reveal that the reduction current density of H2O2 reduction on the MnO2/rGO@Ni foam electrode reaches 240 mA/cm2 in a solution of 1.0 mol/L H2O2 and 3 mol/L NaOH at -0.8 V which is much higher than that on MnO2 directly supported on Ni foam (MnO2@Ni foam). At the same time, a better stability is also achieved on the MnO2/rGO@Ni foam electrode. Generally speaking, the addition of rGO highly improves the electrocatalytic activity and stability of the as-prepared electrode indicating great application prospect in the future.
  • 加载中
    1. [1]

      Chen, X.; Yan, H.; Xia, D. Acta Chim. Sinica 2017, 75, 189.  doi: 10.3969/j.issn.0253-2409.2017.02.008
       

    2. [2]

      Li, J.; Zhang, X.; Pan, B. Chin. J. Chem. 2016, 34, 1021.  doi: 10.1002/cjoc.v34.10

    3. [3]

      Sun, L. M.; Cao, D. X.; Wang, G. L.; Lu, Y. Z.; Zhang, M. L. Acta Phys. Chim. Sin. 2008, 24, 323.
       

    4. [4]

      Ma, J.; Choudhury, N. A.; Sahai, Y. Renew. Sust. Energ. Rev. 2010, 14, 183.  doi: 10.1016/j.rser.2009.08.002

    5. [5]

      Tian, Y. M.; Lei, T.; Wang, G. L.; Cao, D. X. Chem. J. Chin. Univ. 2011, 32, 2382.
       

    6. [6]

      Cheng, K.; Yang, F.; Yan, P.; Cao, D. X.; Yin, J. L.; Wang, G. L. Chem. J. Chin. Univ. 2014, 35, 110.  doi: 10.7503/cjcu20130504

    7. [7]

      Li, Z. P.; Liu, B. H.; Arai, K.; Suda, S. J. Electrochem. Soc. 2003, 150, A868.  doi: 10.1149/1.1576767

    8. [8]

      Sun, L. M.; Cao, D. X.; Wang, G. L. J. Appl. Electrochem. 2008, 38, 1415.  doi: 10.1007/s10800-008-9581-8

    9. [9]

      Flätgen, G.; Wasle, S.; Lübke, M.; Eickes, C.; Radhakrishnan, G.; Doblhofer, K.; Ertl, G. Electrochim. Acta 1999, 44, 4499.  doi: 10.1016/S0013-4686(99)00184-X

    10. [10]

      Gerlache, M.; Senturk, Z.; Quarin, G.; Kauffmann, J. M. Electroanal. 1997, 9, 1088.  doi: 10.1002/(ISSN)1521-4109

    11. [11]

      Luo, Y. F.; Li, H. Z.; Chen, T. T.; Ge, C. W.; Tang, Y. W.; Chen, Y.; Lu, T. H. Electrochim. Acta 2013, 87, 839.  doi: 10.1016/j.electacta.2012.09.018

    12. [12]

      Yang, F.; Cheng, K.; Wu, T. H.; Zhang, Y.; Yin, J. L.; Wang, G. L.; Cao, D. X. RSC Adv. 2013, 3, 5483.  doi: 10.1039/c3ra23415k

    13. [13]

      Wang, G. L.; Hao, S. Y.; Lu, T. H.; Cao, D. X.; Yin, C. L. Chem. J. Chin. Univ. 2010, 31, 2264.
       

    14. [14]

      Wang, G. L.; Cao, D. X.; Yin, C. L.; Gao, Y. Y.; Yin, J. L.; Cheng, L. Chem. Mater. 2009, 21, 5112.  doi: 10.1021/cm901928b

    15. [15]

      Cheng, F.; Shen, J.; Ji, W.; Tao, Z.; Chen, J. ACS Appl. Mater. Inter. 2009, 1, 460.  doi: 10.1021/am800131v

    16. [16]

      Ma, Y.; Wang, R.; Wang, H.; Key, J.; Ji, S. J. Power Sources 2015, 280, 526.  doi: 10.1016/j.jpowsour.2015.01.139

    17. [17]

      Roche, I.; Chaînet, E.; Chatenet, M.; Vondrák, J. J. Phys. Chem. C 2007, 111, 1434.  doi: 10.1021/jp0647986

    18. [18]

      Yan, P.; Zhang, D. M.; Cheng, K.; Xu, Y.; Li, Y. Y.; Ye, K.; Cao, D. X.; Wang, G. L. Chem. J. Chin. Univ. 2015, 36, 1801.
       

    19. [19]

      Quan, Q.; Lin, X.; Zhang, N.; Xu, Y. J. Nanoscale 2017, 9, 2398.  doi: 10.1039/C6NR09439B

    20. [20]

      Han, C.; Zhang, N.; Xu, Y. J. Nano Today 2016, 11, 351.  doi: 10.1016/j.nantod.2016.05.008

    21. [21]

      Yang, M. Q.; Zhang, N.; Wang, Y.; Xu, Y. J. J. Catal. 2017, 346, 21.  doi: 10.1016/j.jcat.2016.11.012

    22. [22]

      Hu, C.; Bai, Z.; Yang, L.; Lv, J.; Wang, K.; Guo, Y.; Cao, Y.; Zhou, J. Electrochim. Acta 2010, 55, 6036.  doi: 10.1016/j.electacta.2010.05.063

    23. [23]

      Cao, D.; Sun, L.; Wang, G.; Lv, Y.; Zhang, M. J. Electroanal. Chem. 2008, 621, 31.  doi: 10.1016/j.jelechem.2008.04.007

    24. [24]

      Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806.  doi: 10.1021/nn1006368

  • 加载中
    1. [1]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    2. [2]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    3. [3]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    4. [4]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    6. [6]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    11. [11]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    12. [12]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    13. [13]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    14. [14]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(11)
  • Abstract views(2064)
  • HTML views(537)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return