Citation: Xia Lan, Yu Linpo, Hu Di, Chen Z. George. Research Progress and Perspectives on High Voltage, Flame Retardant Electrolytes for Lithium-Ion Batteries[J]. Acta Chimica Sinica, ;2017, 75(12): 1183-1195. doi: 10.6023/A17060284 shu

Research Progress and Perspectives on High Voltage, Flame Retardant Electrolytes for Lithium-Ion Batteries

  • Corresponding author: Chen Z. George, george.chen@nottingham.edu.cn
  • Received Date: 28 June 2017
    Available Online: 4 December 2017

    Fund Project: Ningbo Natural Science Foundation Programme 2017A610022the National Natural Science Foundation of China 21503246Ningbo Natural Science Foundation Programme 2016A610114the Ningbo Municipal Government (3315 Plan and the IAMET Special Fund 2014A35001-1the Project of Science and Technology Department of Zhejiang Province 2016C31023the Project of Science and Technology Department of Zhejiang Province 2017C31104Project supported by the National Natural Science Foundation of China (No. 21503246), the Ningbo Municipal Government (3315 Plan and the IAMET Special Fund, No. 2014A35001-1), Ningbo Natural Science Foundation Programme (Nos. 2017A610022, 2016A610114, 2016A610115), and the Project of Science and Technology Department of Zhejiang Province (Nos. 2016C31023、No. 2017C31104)Ningbo Natural Science Foundation Programme 2016A610115AAA AAA

Figures(9)

  • The electrolyte is an indispensable constituent in lithium ion batteries, and its role conducts electricity by means of the transportation of charge carries between the pair of electrodes. Its properties directly affect the energy density, cycle life and safety of the battery. However, there are two major challenges to using carbonate-based electrolytes in recent lithium ion batteries (LIBs) to further increase the energy density of the devices without compromising the safety. One is that carbonate-based electrolytes are not sufficiently stable at the positive electrode, and the other is their relatively high flammability. Therefore, developing high voltage and flame retardant electrolytes for LIBs is highly desired. Herein, we review the recent progress and challenges in new electrolytes, focusing on high-voltage electrolytes, flame retardant electrolytes and highly concentrated electrolytes. Among the reported electrolytes, highly concentrated electrolytes are worth a special attention, showing various unusual functionalities, for example, high oxidative stability, low volatility, high reductive stability, and non-corrosive to Al. These special properties are totally different from that of the conventional 1 mol•L-1 LiPF6/EC-based electrolytes, which are result from solution structures. A discussion is also provided in this review on the prospects of further development of new electrolytes for LIBs.
  • 加载中
    1. [1]

      Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H. J. Electrochim. Acta 2004, 50, 247.  doi: 10.1016/j.electacta.2004.01.090

    2. [2]

      Markovsky, B.; Amalraj, F.; Gottlieb, H. E.; Gofer, Y.; Martha, S. K.; Aurbach, D. J. Electrochem. Soc. 2010, 157, A423.  doi: 10.1149/1.3294774

    3. [3]

      Erickson, E. M.; Markevich, E.; Salitra, G.; Sharon, D.; Hirshberg, D.; de la Llave, E.; Shterenberg, I.; Rozenman, A.; Frimer, A.; Aurbach, D. J. Electrochem. Soc. 2015, 162, A2424.  doi: 10.1149/2.0051514jes

    4. [4]

      Xu, K. Chem. Rev. 2004, 104, 4303.  doi: 10.1021/cr030203g

    5. [5]

      Hu, M.; Pang, X.; Zhou, Z. J. Power Sources 2013, 237, 229.  doi: 10.1016/j.jpowsour.2013.03.024

    6. [6]

      Xu, K. Chem. Rev. 2014, 114, 11503.  doi: 10.1021/cr500003w

    7. [7]

      Wan, Y.; Zheng, Q.-J.; Lin, D.-M. Acta Chim. Sinica 2014, 72, 537.
       

    8. [8]

      Xing, L.; Li, W.; Wang, C.; Gu, F.; Xu, M.; Tan, C.; Yi, J. J. Phys. Chem. B 2009, 113, 16596.  doi: 10.1021/jp9074064

    9. [9]

      Yang, L.; Ravdel, B.; Lucht, B. L. Electrochem. Solid-State Lett. 2010, 13, A95.  doi: 10.1149/1.3428515

    10. [10]

      Kim, J.-H.; Pieczonka, N. P. W.; Li, Z.; Wu, Y.; Harris, S.; Powell, B. R. Electrochim. Acta 2013, 90, 556.  doi: 10.1016/j.electacta.2012.12.069

    11. [11]

      Pieczonka, N. P. W.; Liu, Z.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J.-H. J. Phys. Chem. C 2013, 117, 15947.  doi: 10.1021/jp405158m

    12. [12]

      Yao, X. L.; Xie, S.; Chen, C. H.; Wang, Q. S.; Sun, J. H.; Li, Y. L.; Lu, S. X. J. Power Sources 2005, 144, 170.  doi: 10.1016/j.jpowsour.2004.11.042

    13. [13]

      Zhang, H. P.; Xia, Q.; Wang, B.; Yang, L. C.; Wu, Y. P.; Sun, D. L.; Gan, C. L.; Luo, H. J.; Bebeda, A. W.; Ree, T. v. Electrochem. Commun. 2009, 11, 526.  doi: 10.1016/j.elecom.2008.11.050

    14. [14]

      Hyung, Y. E.; Vissers, D. R.; Amine, K. J. Power Sources 2003, 119-121, 383.  doi: 10.1016/S0378-7753(03)00225-8

    15. [15]

      Mandal, B. K.; Padhi, A. K.; Shi, Z.; Chakraborty, S.; Filler, R. J. Power Sources 2006, 161, 1341.  doi: 10.1016/j.jpowsour.2006.06.008

    16. [16]

      Shim, E.-G.; Nam, T.-H.; Kim, J.-G.; Kim, H.-S.; Moon, S.-I. J. Power Sources 2007, 172, 901.  doi: 10.1016/j.jpowsour.2007.04.089

    17. [17]

      Ren, Y.; Wen, Y.; Lian, F.; Qiu, W.-H. Chemistry 2015, 78, 107.

    18. [18]

      Dalavi, S.; Xu, M.; Knight, B.; Lucht, B. L. Electrochem. Solid-State Lett. 2011, 15, A28.  doi: 10.1149/2.015202esl

    19. [19]

      Yang, L.; Markmaitree, T.; Lucht, B. L. J. Power Sources 2011, 196, 2251.  doi: 10.1016/j.jpowsour.2010.09.093

    20. [20]

      Hu, M.; Wei, J.; Xing, L.; Zhou, Z. J. Appl. Electrochem. 2012, 42, 291.  doi: 10.1007/s10800-012-0398-0

    21. [21]

      Li, Z. D.; Zhang, Y. C.; Xiang, H. F.; Ma, X. H.; Yuan, Q. F.; Wang, Q. S.; Chen, C. H. J. Power Sources 2013, 240, 471.  doi: 10.1016/j.jpowsour.2013.04.038

    22. [22]

      von Cresce, A.; Xu, K. J. Electrochem. Soc. 2011, 158, A337.  doi: 10.1149/1.3532047

    23. [23]

      von Cresce, A.; Xu, K. ECS Transactions 2012, 41, 17.

    24. [24]

      Rong, H.; Xu, M.; Xing, L.; Li, W. J. Power Sources 2014, 261, 148.  doi: 10.1016/j.jpowsour.2014.03.032

    25. [25]

      Song, Y.-M.; Han, J.-G.; Park, S.; Lee, K. T.; Choi, N.-S. J. Mater. Chem. A 2014, 2, 9506.  doi: 10.1039/C4TA01129E

    26. [26]

      Yan, G.; Li, X.; Wang, Z.; Guo, H.; Wang, C. J. Power Sources 2014, 248, 1306.  doi: 10.1016/j.jpowsour.2013.10.037

    27. [27]

      Zhang, J.; Wang, J.; Yang, J.; NuLi, Y. Electrochim. Acta 2014, 117, 99.  doi: 10.1016/j.electacta.2013.11.024

    28. [28]

      Yan, G.; Li, X.; Wang, Z.; Guo, H.; Xiong, X. J. Power Sources 2014, 263, 231.  doi: 10.1016/j.jpowsour.2014.04.060

    29. [29]

      Felix, F.; Cheng, J.-H.; Hy, S.; Rick, J.; Wang, F. M.; Hwang, B.-J. J. Phys. Chem. C 2013, 117(44), 22619.  doi: 10.1021/jp409779x

    30. [30]

      Lee, H.; Choi, S.; Choi, S.; Kim, H.-J.; Choi, Y.; Yoon, S.; Cho, J.-J. Electrochem. Commun. 2007, 9, 801.  doi: 10.1016/j.elecom.2006.11.008

    31. [31]

      Tarnopolskiy, V.; Kalhoff, J.; Nádherná, M.; Bresser, D.; Picard, L.; Fabre, F.; Rey, M.; Passerini, S. J. Power Sources 2013, 236, 39.  doi: 10.1016/j.jpowsour.2013.02.030

    32. [32]

      Bouayad, H.; Wang, Z.; Dupré, N.; Dedryvère, R.; Foix, D.; Franger, S.; Martin, J.-F.; Boutafa, L.; Patoux, S.; Gonbeau, D.; Guyomard, D. J. Phys. Chem. C 2014, 118(9), 4634.  doi: 10.1021/jp5001573

    33. [33]

      Pieczonka, N. P. W.; Yang, L.; Balogh, M. P.; Powell, B. R.; Chemelewski, K. R.; Manthiram, A.; Krachkovskiy, S. A.; Goward, G. R.; Liu, M.; Kim, J.-H. J. Phys. Chem. C 2013, 117(44), 22603.  doi: 10.1021/jp408717x

    34. [34]

      Xu, K.; Zhang, S.; Jow, T. R. Electrochem. Solid-State Lett. 2003, 6, A117.  doi: 10.1149/1.1568173

    35. [35]

      Wu, Q.; Lu, W.; Miranda, M.; Honaker-Schroeder, T. K.; Lakhsassi, K. Y.; Dees, D. Electrochem. Commun. 2012, 24, 78.  doi: 10.1016/j.elecom.2012.08.016

    36. [36]

      Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Demeaux, J.; MacIntosh, A. D.; Garsuch, A.; Lucht, B. L. Energy Environ. Sci. 2016, 9, 1308.  doi: 10.1039/C5EE03360H

    37. [37]

      Ue, M.; Ida, K.; Mori, S. J. Electrochem. Soc. 1994, 141, 2989.  doi: 10.1149/1.2059270

    38. [38]

      Ue, M.; Takeda, M.; Takehara, M.; Mori, S. J. Electrochem. Soc. 1997, 144, 2684.  doi: 10.1149/1.1837882

    39. [39]

      Nanini-Maury, E.; Światowska, J.; Chagnes, A.; Zanna, S.; Tran-Van, P.; Marcus, P.; Cassir, M. Electrochim. Acta 2014, 115, 223.  doi: 10.1016/j.electacta.2013.10.087

    40. [40]

      Nagahama, M.; Hasegawa, N.; Okada, S. J. Electrochem. Soc. 2010, 157, A748.  doi: 10.1149/1.3417068

    41. [41]

      Kavan L. Chem. Rev. 1997, 97, 3061.  doi: 10.1021/cr960003n

    42. [42]

      Abu-Lebdeh, Y.; Davidson, I. J. Electrochem. Soc. 2009, 156, A60.  doi: 10.1149/1.3023084

    43. [43]

      Abu-Lebdeh, Y.; Davidson, I. J. Power Sources 2009, 189, 576.  doi: 10.1016/j.jpowsour.2008.09.113

    44. [44]

      Gmitter, A. J.; Plitz, I.; Amatucci, G. G. J. Electrochem. Soc. 2012, 159, A370.  doi: 10.1149/2.016204jes

    45. [45]

      Xu, K.; Angell, C. A. J. Electrochem. Soc. 1998, 145, L70.  doi: 10.1149/1.1838419

    46. [46]

      Sun, X.-G.; Angell, C. A. Solid State Ionics 2004, 175, 257.  doi: 10.1016/j.ssi.2003.11.035

    47. [47]

      Sun, X.-G.; Angell, C. A. Electrochem. Commun. 2005, 7, 261.  doi: 10.1016/j.elecom.2005.01.010

    48. [48]

      Sun, X.; Angell, C. A. Meeting Abstracts 2008, MA2008-01, 162.

    49. [49]

      Watanabe, Y.; Kinoshita, S.-i.; Wada, S.; Hoshino, K.; Morimoto, H.; Tobishima, S.-i. J. Power Sources 2008, 179, 770.  doi: 10.1016/j.jpowsour.2008.01.006

    50. [50]

      Sun, X.; Angell, C. A. Electrochem. Commun. 2009, 11, 1418.  doi: 10.1016/j.elecom.2009.05.020

    51. [51]

      Mao, L.; Li, B.; Cui, X.; Zhao, Y.; Xu, X.; Shi, X.; Li, S.; Li, F. Electrochim. Acta 2012, 79, 197.  doi: 10.1016/j.electacta.2012.06.102

    52. [52]

      Li, C.; Zhao, Y.; Zhang, H.; Liu, J.; Jing, J.; Cui, X.; Li, S. Electrochim. Acta 2013, 104, 134.  doi: 10.1016/j.electacta.2013.04.075

    53. [53]

      Wu, F.; Xiang, J.; Li, L.; Chen, J.; Tan, G.; Chen, R. J. Power Sources 2012, 202, 322.  doi: 10.1016/j.jpowsour.2011.11.065

    54. [54]

      Wu, F.; Zhu, Q.; Li, L.; Chen, R.; Chen, S. J. Mater. Chem. A 2013, 1, 3659.  doi: 10.1039/c3ta01182h

    55. [55]

      Abouimrane, A.; Belharouak, I.; Amine, K. Electrochem. Commun. 2009, 11, 1073.  doi: 10.1016/j.elecom.2009.03.020

    56. [56]

      Xing, L.; Vatamanu, J.; Borodin, O.; Smith, G. D.; Bedrov, D. J. J. Phys. Chem. C 2012, 116, 23871.  doi: 10.1021/jp3054179

    57. [57]

      Sakaebe, H.; Matsumoto, H. Electrochem. Commun. 2003, 5, 594.  doi: 10.1016/S1388-2481(03)00137-1

    58. [58]

      Matsumoto, H.; Sakaebe, H.; Tatsumi, K. J. Power Sources 2005, 146, 45.  doi: 10.1016/j.jpowsour.2005.03.103

    59. [59]

      Galiński, M.; Lewandowski, A.; Stępniak, I. Electrochim. Acta 2006, 51, 5567.  doi: 10.1016/j.electacta.2006.03.016

    60. [60]

      Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621.  doi: 10.1038/nmat2448

    61. [61]

      Seki, S.; Serizawa, N.; Takei, K.; Miyashiro, H.; Watanabe, M. Meeting Abstracts 2011, MA2011-02, 1277.

    62. [62]

      Le, M.-L.-P.; Alloin, F.; Strobel, P.; Leprêtre, J.-C.; Cointeaux, L.; Valle, C. Ionics 2012, 18, 817.  doi: 10.1007/s11581-012-0688-x

    63. [63]

      Dokko, K.; Tachikawaa, N.; Yamauchia, K.; Tsuchiyaa, M.; Yamazakia, A.; Takashimaa, E.; Parka, J.-W.; Uenoa, K.; Sekib, S.; Serizawab, N.; Watanabea, M. J. Electrochem. Soc. 2013, 160, A1304.  doi: 10.1149/2.111308jes

    64. [64]

      Borgel, V.; Markevich, E.; Aurbach, D.; Semrau, G.; Schmidt, M. J. Power Sources 2009, 189, 331.  doi: 10.1016/j.jpowsour.2008.08.099

    65. [65]

      Xiang, J.; Wu, F.; Chen, R.; Li, L.; Yu, H. J. Power Sources 2013, 233, 115.  doi: 10.1016/j.jpowsour.2013.01.123

    66. [66]

      Mun, J.; Yim, T.; Park, K.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. J. Electrochem. Soc. 2011, 158, A453.  doi: 10.1149/1.3560205

    67. [67]

      Kitagawa, T.; Azuma, K.; Koh, M.; Yamauchi, A.; Kagawa, M.; Sakata, H.; Miyawaki, H.; Nakazono, A.; Arima, H.; Yamagata, M. Electrochemistry 2010, 78, 345.  doi: 10.5796/electrochemistry.78.345

    68. [68]

      Hu, L.; Zhang, Z.; Amine, K. Electrochem. Commun. 2013, 35, 76.  doi: 10.1016/j.elecom.2013.08.009

    69. [69]

      Markevich, E.; Salitra, G.; Fridman, K.; Sharabi, R.; Gershinsky, G.; Garsuch, A.; Semrau, G.; Schmidt, M. A.; Aurbach, D. Langmuir 2014, 30, 7414.  doi: 10.1021/la501368y

    70. [70]

      Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2013, 6, 1806.  doi: 10.1039/c3ee24414h

    71. [71]

      Achiha, T.; Nakajima, T.; Ohzawa, Y.; Koh, M.; Yamauchi, A.; Kagawa, M.; Aoyama, H. J. Electrochem. Soc. 2010, 157, A707.  doi: 10.1149/1.3377084

    72. [72]

      Xia, L.; Xia, Y.; Wang, C.; Hu, H.; Lee, S.; Yu, Q.; Chen, H.; Liu, Z. ChemElectroChem 2015, 2, 1707.  doi: 10.1002/celc.201500286

    73. [73]

      Yan, G.; Li, X.; Wang, Z.; Guo, H.; Wang, J. J. Phys. Chem. C 2014, 118, 6586.  doi: 10.1021/jp4119106

    74. [74]

      Chen, Z.; Qin, Y.; Ren, Y.; Lu, W.; Orendorff, C. E.; Roth, P.; Amine, K. Energy Environ. Sci. 2011, 4, 4023.  doi: 10.1039/c1ee01786a

    75. [75]

      Wong, D. H. C.; Thelen, J. L.; Fu, Y.; Devaux, D.; Pandya, A. A.; Battaglia, V. S.; Balsara, N. P.; Desimone, J. M. PNAS 2014, 111, 3327.  doi: 10.1073/pnas.1314615111

    76. [76]

      Arai, J. J. Electrochem. Soc. 2003, 150, A219.  doi: 10.1149/1.1538224

    77. [77]

      Naoi, K.; Iwama, E.; Ogihara, N.; Nakamura, Y.; Segawa, H.; Ino, Y. J. Electrochem. Soc. 2009, 156, A272.  doi: 10.1149/1.3073552

    78. [78]

      Naoi, K.; Iwama, E.; Honda, Y.; Shimodate, F. J. Electrochem. Soc. 2010, 157, A190.  doi: 10.1149/1.3265475

    79. [79]

      Huang, Q.; Yan, M.-M.; Jiang, Z.-Y. Acta Chim. Sinica 2008, 66, 1.
       

    80. [80]

      Xia, L. Ph. D. Dissertation, Wuhan University, Wuhan, 2013.

    81. [81]

      Choi, J.-A.; Sun, Y.-K.; Shim, E.-G.; Scrosati, B.; Kim, D.-W. Electrochim. Acta 2011, 56, 10179.  doi: 10.1016/j.electacta.2011.09.009

    82. [82]

      Pan, X.-R.; Lian, F.; Guan, H.-Y.; He, Y. Chemistry 2014, 77, 752.

    83. [83]

      Lombardo, L.; Brutti, S.; Navarra, M. A.; Panero, S.; Reale, P. J. Power Sources 2013, 227, 8.  doi: 10.1016/j.jpowsour.2012.11.017

    84. [84]

      Wang, X.; Yasukawa, E.; Kasuya, S. J. Electrochem. Soc. 2001, 148, A1058.  doi: 10.1149/1.1397773

    85. [85]

      Feng, J. K.; Ai, X. P.; Cao, Y. L.; Yang, H. X. J. Power Sources 2008, 177, 194.  doi: 10.1016/j.jpowsour.2007.10.084

    86. [86]

      Jia, H.; Wang, J. L.; Lin, F. J.; Monroe, C. W.; Yang, J.; NuLi, Y. Chem. Commun. 2014, 50, 7011.  doi: 10.1039/C4CC01151A

    87. [87]

      Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2002, 149, A622  doi: 10.1149/1.1467946

    88. [88]

      Wu, B. B.; Pei, F.; Wu, Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. J. Power Source 2013, 227, 106.  doi: 10.1016/j.jpowsour.2012.11.018

    89. [89]

      Zeng, Z. Q.; Jiang, X. Y.; Wu, B. B.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Electrochim. Acta 2014, 129, 300.  doi: 10.1016/j.electacta.2014.02.062

    90. [90]

      Xu, K.; Ding, M. S.; Zhang, S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2003, 150, A161.  doi: 10.1149/1.1533040

    91. [91]

      Xu, K.; Zhang, S. S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2003, 150, A170.  doi: 10.1149/1.1533041

    92. [92]

      Tsujikawa, T.; Yabuta, K.; Matsushita, T.; Matsushima, T.; Hayashi, K.; Arakawa, M. J. Power Sources 2009, 189, 429.  doi: 10.1016/j.jpowsour.2009.02.010

    93. [93]

      Zhang, S. S.; Xu, K.; Jow, T. R. J. Power Source 2003, 113, 166.  doi: 10.1016/S0378-7753(02)00537-2

    94. [94]

      Xiang, H. F.; Xu, H. Y.; Wang, Z. Z.; Chen, C. H. J. Power Source 2007, 173, 562.  doi: 10.1016/j.jpowsour.2007.05.001

    95. [95]

      Xia, L.; Xia, Y.-G.; Liu, Z.-P. J. Power Sources 2015, 278, 190.  doi: 10.1016/j.jpowsour.2014.11.140

    96. [96]

      Allen, C. W.; Bedell, S.; Pennington, W. T.; Cordes, A. W. Inorg. Chem. 1985, 24, 1653.  doi: 10.1021/ic00205a012

    97. [97]

      Feng, J. K.; An, Y. L.; Ci, L. J.; Xiong, S. L. J. Mater. Chem. A 2015, 3, 14539.  doi: 10.1039/C5TA03548A

    98. [98]

      Zhou, D.; Li, W.; Tan, C.; Zuo, X.; Huang, Y. J. Power Sources 2008, 184, 589.  doi: 10.1016/j.jpowsour.2008.03.008

    99. [99]

      Arai, J.; Katayama, H.; Akahoshi, H. J. Electrochem. Soc. 2002, 149, A217.  doi: 10.1149/1.1433749

    100. [100]

      Arai, J. J. Appl. Electrochem. 2002, 32, 1071.  doi: 10.1023/A:1021231514663

    101. [101]

      Arai, J. J. Electrochem. Soc. 2003, 150, A219.  doi: 10.1149/1.1538224

    102. [102]

      Naoi, K.; Iwama, E.; Ogihara, N.; Nakamura, Y.; Segawa, H.; Ino, Y. J. Electrochem. Soc. 2009, 156, A272.  doi: 10.1149/1.3073552

    103. [103]

      Naoi, K.; Iwama, E.; Honda, Y.; Shimodate, F. J. Electrochem. Soc. 2010, 157, A190.  doi: 10.1149/1.3265475

    104. [104]

      Kim, G.-T.; Jeong, S. S.; Joost, M.; Rocca, E.; Winter, M.; Passerini, S.; Balducci, A. J. Power Sources 2011, 196, 2187.  doi: 10.1016/j.jpowsour.2010.09.080

    105. [105]

      Kim, G.-T.; Jeong, S. S.; Xue, M.-Z.; Balducci, A.; Winter, M.; Passerini, S.; Alessandrini, F.; Appetecchi, G. B. J. Power Sources 2012, 199, 239.  doi: 10.1016/j.jpowsour.2011.10.036

    106. [106]

      Appetecchi, G. B.; Scaccia, S.; Tizzani, C.; Alessandrini, F.; Passerini, S. J. Electrochem. Soc. 2006, 153, A1685.  doi: 10.1149/1.2213420

    107. [107]

      Kalhoff, J.; Kim, G.-T.; Passerini, S.; Appetecchi, G. B. J. Power Energy Eng. 2016, 4, 9.

    108. [108]

      Yang, B.; Li, C.; Zhou, J.; Liu, J.; Zhang, Q. Electrochim. Acta 2014, 148, 39.  doi: 10.1016/j.electacta.2014.10.001

    109. [109]

      Lombardo, L.; Brutti, S.; Navarra, M. A.; Panero, S.; Reale, P. J. Power Sources 2013, 227, 8.  doi: 10.1016/j.jpowsour.2012.11.017

    110. [110]

      Wilken, S.; Xiong, S.; Scheers, J.; Jacobsson, P.; Johansson, P. J. Power Sources 2015, 275, 935.  doi: 10.1016/j.jpowsour.2014.11.071

    111. [111]

      Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Protti, S.; Lazzaroni, S.; Fagnoni, M.; Albini, A. J. Power Sources 2009, 194, 45.  doi: 10.1016/j.jpowsour.2008.12.013

    112. [112]

      Chen, Z.; Xi, H.; Lim, K. H.; Lee, J. Angew. Chem. Int. Ed. 2013, 52, 13392.  doi: 10.1002/anie.201306476

    113. [113]

      Quinzeni, I.; Ferrari, S.; Quartarone, E.; Tomasi, C.; Fagnoni, M.; Mustarelli, P. J. Power Sources 2013, 237, 204.  doi: 10.1016/j.jpowsour.2013.03.036

    114. [114]

      Kim, H.-T.; Kang, J.; Mun, J.; Oh, S. M.; Yim, T.; Kim, Y. G. ACS Sustainable Chem. Eng. 2016, 4, 497.  doi: 10.1021/acssuschemeng.5b00981

    115. [115]

      Yamada, Y.; Yamada, A. J. Electrochem. Soc. 2015, 162, A2406.  doi: 10.1149/2.0041514jes

    116. [116]

      Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. J. Am. Chem. Soc. 2014, 136, 5039.  doi: 10.1021/ja412807w

    117. [117]

      Doi, T.; Masuhara, R.; Hashinokuchi, M.; Shimizu, Y.; Inaba, M. Electrochim. Acta 2016, 209, 219.  doi: 10.1016/j.electacta.2016.05.062

    118. [118]

      Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Nat. Commun. 2016, 7, 12032.  doi: 10.1038/ncomms12032

    119. [119]

      Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K. J. Power Sources 2013, 231, 234.  doi: 10.1016/j.jpowsour.2012.12.028

    120. [120]

      McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Energy Environ. Sci. 2014, 7, 416.  doi: 10.1039/C3EE42351D

    121. [121]

      Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J.; Tateyama, Y.; Yamada, A. ChemElectroChem 2015, 2, 1687.  doi: 10.1002/celc.201500235

    122. [122]

      Besenhard, J. O. Carbon 1976, 14, 111.  doi: 10.1016/0008-6223(76)90119-6

    123. [123]

      Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W. J. Power Sources 1995, 54, 228.  doi: 10.1016/0378-7753(94)02073-C

    124. [124]

      Arakawa, M.; Yamaki, J. J. Electroanal. Chem. 1987, 219, 273.  doi: 10.1016/0022-0728(87)85045-3

    125. [125]

      Abe, T.; Kawabata, N.; Mizutani, Y.; Inaba, M.; Ogumi, Z. J. Electrochem. Soc. 2003, 150, A257.  doi: 10.1149/1.1541004

    126. [126]

      Yamada, Y.; Yaegashi, M.; Abe, T.; Yamada, A. Chem. Commun. 2013, 49, 11194.  doi: 10.1039/c3cc46665e

    127. [127]

      Sodeyama, K.; Yamada, Y.; Aikawa, K.; Yamada, A.; Tateyama, Y. J. Phys. Chem. C 2014, 118, 14091.  doi: 10.1021/jp501178n

    128. [128]

      Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4, 1481.  doi: 10.1038/ncomms2513

    129. [129]

      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362.  doi: 10.1038/ncomms7362

    130. [130]

      Ma, Q.; Fang, Z.; Liu, P.; Ma, J.; Qi, X.; Feng, W.; Nie, J.; Hu, Y.-S.; Li, H.; Huang, X.; Chen, L.; Zhou, Z. ChemElectroChem 2016, 3, 531.  doi: 10.1002/celc.201500520

  • 加载中
    1. [1]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(71)
  • Abstract views(7911)
  • HTML views(1291)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return