Citation: Wang Juan, Zou Qianli, Yan Xuehai. Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization[J]. Acta Chimica Sinica, ;2017, 75(10): 933-942. doi: 10.6023/A17060272 shu

Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization

  • Corresponding author: Yan Xuehai, yanxh@ipe.ac.cn
  • Received Date: 18 June 2017
    Available Online: 7 October 2017

    Fund Project: the National Natural Science Foundation of China 91434103the National Natural Science Foundation of China 21473208Project supported by the National Natural Science Foundation of China (Nos. 21522307, 21473208 and 91434103)the National Natural Science Foundation of China 21522307

Figures(15)

  • Biomolecular self-assembly plays a significant role for physiological function. Inspired by this, the construction of functional structures and architectures by biomolecular self-assembly has attracted tremendous attentions. Peptides can be assembled into diverse nanostructures, exhibiting important potential for biomedical and green-life technology applications. How to achieve the structural precise regulation of various nanostructures and functionalization by precise control of structures is the two key challenges in the field of peptide self-assembly. As the assembly process is a spontaneous thermodynamic and kinetic driven process, and is determined by the cooperation of various intermolecular non-covalent interactions, including hydrogen-bonding, electrostatic, π-π stacking, hydrophobic, and van der Waals interactions, the reasonable regulation of these non-covalent interactions is a critical pathway to achieve the two goals. To modulate these non-covalent interactions, one of the common used methods is to change the kinetic factors/external environment, including pH, ionic strength, and temperature, etc. These kinetic factors can effectively influence the interactions between peptides and solvents, resulting in dynamic and responsive variations in structures through multiple length scales and ultimate morphologies. However, the fatal disadvantage is the lacking of the precise regulation of assembled structures in the molecular level with consideration of both thermodynamics and kinetics. Compared with changing the external environment, the specific and precise molecular design is more favorable to achieve the structural precise regulation. The molecular structures and the component of building blocks can be rationally designed. For example, one can modulate the interactions between two or more than two building blocks by changing the physicochemical properties of each building block, enabling self-assembly and structural diversity of the final nanostructures. Furthermore, by combining peptides and other functional biomolecules (such as porphyrins), the functionalization of assembled nanostructures and architectures can be achieved more easily and flexibly. In this review, we will focus on the structural precise regulation and the functionalization of assembled peptide nanostructures. It is believed that the precise regulation of nanostructures is promising to promote the development of peptide-based materials towards green-life technology applications.
  • 加载中
    1. [1]

      Mahadevi, A. S.; Sastry, G. N. Chem. Rev. 2016, 116, 2775.  doi: 10.1021/cr500344e

    2. [2]

      Gao, Y.; Hu, J.; Ju, Y. Acta Chim. Sinica 2016, 74, 312.
       

    3. [3]

      Boyle, A. L.; Woolfson, D. N. Chem. Soc. Rev. 2011, 40, 4295.  doi: 10.1039/c0cs00152j

    4. [4]

      Smith, K. H.; Tejeda-Montes, E.; Poch, M.; Mata, A. Chem. Soc. Rev. 2011, 40, 4563.  doi: 10.1039/c1cs15064b

    5. [5]

      Fleming, S.; Ulijn, R. V. Chem. Soc. Rev. 2014, 43, 8150.  doi: 10.1039/C4CS00247D

    6. [6]

      Hauser, C. A.; Zhang, S. Nature 2010, 468, 516.  doi: 10.1038/468516a

    7. [7]

      De Santis, E.; Ryadnov, M. G. Chem. Soc. Rev. 2015, 44, 8288.  doi: 10.1039/C5CS00470E

    8. [8]

      Ulijn, R. V.; Woolfson, D. N. Chem. Soc. Rev. 2010, 39, 3349.  doi: 10.1039/c0cs90015j

    9. [9]

      Ariga, K.; Ji, Q.; Nakanishi, W.; Hill, J. P.; Aono, M. Mater. Horiz. 2015, 2, 406.  doi: 10.1039/C5MH00012B

    10. [10]

      Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196.  doi: 10.1021/cr500633b

    11. [11]

      Ariga, K.; Li, J.; Fei, J.; Ji, Q.; Hill, J. P. Adv. Mater. 2016, 28, 1251.  doi: 10.1002/adma.201502545

    12. [12]

      Wang, J.; Liu, K.; Xing, R.; Yan, X. Chem. Soc. Rev. 2016, 45, 5589.  doi: 10.1039/C6CS00176A

    13. [13]

      Hamley, I. W. Angew. Chem., Int. Ed. 2014, 53, 6866.  doi: 10.1002/anie.201310006

    14. [14]

      Dasgupta, A.; Mondal, J. H.; Das, D. RSC Adv. 2013, 3, 9117.  doi: 10.1039/c3ra40234g

    15. [15]

      Hauser, C. A. E.; Zhang, S. Chem. Soc. Rev. 2010, 39, 2780.  doi: 10.1039/b921448h

    16. [16]

      Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J.; Mu, W.; Wang, B.; Ouyang, Z.-C. Chem. Eur. J. 2008, 14, 5974.  doi: 10.1002/chem.v14:19

    17. [17]

      Levin, A.; Mason, T. O.; Adler-Abramovich, L.; Buell, A. K.; Meisl, G.; Galvagnion, C.; Bram, Y.; Stratford, S. A.; Dobson, C. M.; Knowles, T. P. J.; Gazit, E. Nat. Commun. 2014, 5, 5219.  doi: 10.1038/ncomms6219

    18. [18]

      Korevaar, P. A.; Newcomb, C. J.; Meijer, E. W.; Stupp, S. I. J. Am. Chem. Soc. 2014, 136, 8540.  doi: 10.1021/ja503882s

    19. [19]

      Kim, J.; Han, T. H.; Kim, Y.-I.; Park, J. S.; Choi, J.; Churchill, D. C.; Kim, S. O.; Ihee, H. Adv. Mater. 2010, 22, 583.  doi: 10.1002/adma.v22:5

    20. [20]

      Wang, M.; Du, L.; Wu, X.; Xiong, S.; Chu, P. K. ACS Nano 2011, 5, 4448.  doi: 10.1021/nn2016524

    21. [21]

      Wang, Y.; Huang, R.; Qi, W.; Xie, Y.; Wang, M.; Su, R.; He, Z. Small 2015, 11, 2893.  doi: 10.1002/smll.201403645

    22. [22]

      Li, Q.; Jia, Y.; Dai, L. R.; Yang, Y.; Li, J. B. ACS Nano 2015, 9, 2689.  doi: 10.1021/acsnano.5b00623

    23. [23]

      Mason, T. O.; Chirgadze, D. Y.; Levin, A.; Adler-Abramovich, L.; Gazit, E.; Knowles, T. P. J.; Buell, A. K. ACS Nano 2014, 8, 1243.  doi: 10.1021/nn404237f

    24. [24]

      Moyer, T. J.; Finbloom, J. A.; Chen, F.; Toft, D. J.; Cryns, V. L.; Stupp, S. I. J. Am. Chem. Soc. 2014, 136, 14746.  doi: 10.1021/ja5042429

    25. [25]

      Wang, Y.; Qi, W.; Huang, R.; Yang, X.; Wang, M.; Su, R.; He, Z. J. Am. Chem. Soc. 2015, 137, 7869.  doi: 10.1021/jacs.5b03925

    26. [26]

      Zhao, Y. R.; Deng, L.; Wang, J. Q.; Xu, H.; Lu, J. R. Langmuir 2015, 31, 12975.  doi: 10.1021/acs.langmuir.5b02303

    27. [27]

      Cai, C. H.; Lin, J. P.; Lu, Y. Q.; Zhang, Q.; Wang, L. Q. Chem. Soc. Rev. 2016, 45, 5985.  doi: 10.1039/C6CS00013D

    28. [28]

      Shen, Y.; Fu, X.; Fu, W.; Li, Z. Chem. Soc. Rev. 2015, 44, 612.  doi: 10.1039/C4CS00271G

    29. [29]

      Xu, J.; Wang, Z.; Zhang, X. Acta Chim. Sinica 2016, 74, 467.
       

    30. [30]

      Shao, Y.; Li, C.; Zhou, X.; Chen, P.; Yang, Z.; Li, Z.; Liu, D. Acta Chim. Sinica 2015, 73, 815.

    31. [31]

      Wang, J.; Sun, Y.; Dai, J.; Zhao, Y.; Cao, M.; Wang, D.; Xu, H. Acta Phys.-Chim. Sin. 2015, 31, 1365.  doi: 10.3866/PKU.WHXB201505051

    32. [32]

      Li, H.; Wang, J.; Ni, Y.; Zhou, Y.; Yan, D. Acta Chim. Sinica 2016, 74, 415.  doi: 10.3866/PKU.WHXB201511191
       

    33. [33]

      Yuan, D.; Xu, B. J. Mater. Chem. B 2016, 4, 5638.  doi: 10.1039/C6TB01592A

    34. [34]

      Jia, Y.; Li, Q.; Li, J. Chin. Sci. Bull. 2017, 62, 469.
       

    35. [35]

      Li, Y.; Mao, C.; Deng, Z. Chin. J. Chem. 2017, 35, 801.  doi: 10.1002/cjoc.v35.6

    36. [36]

      Zhou, P.; Deng, L.; Wang, Y. T.; Lu, J. R.; Xu, H. Langmuir 2016, 32, 4662.  doi: 10.1021/acs.langmuir.6b00287

    37. [37]

      Zhao, Y. R.; Deng, L.; Yang, W.; Wang, D.; Pambou, E.; Lu, Z. M.; Li, Z. Y.; Wang, J. Q.; King, S.; Rogers, S.; Xu, H.; Lu, J. R. Chem. Eur. J. 2016, 22, 11394.  doi: 10.1002/chem.201601309

    38. [38]

      Zhao, Y. R.; Wang, J. Q.; Deng, L.; Zhou, P.; Wang, S. J.; Wang, Y. T.; Xu, H.; Lu, J. R. Langmuir 2013, 29, 13457.  doi: 10.1021/la402441w

    39. [39]

      Wang, M.; Zhou, P.; Wang, J. Q.; Zhao, Y. R.; Ma, H. C.; Lu, J. R.; Xu, H. J. Am. Chem. Soc. 2017, 139, 4185.  doi: 10.1021/jacs.7b00847

    40. [40]

      Wang, J.; Liu, K.; Yan, L.; Wang, A.; Bai, S.; Yan, X. ACS Nano 2016, 10, 2138.  doi: 10.1021/acsnano.5b06567

    41. [41]

      Yuan, D.; Du, X.; Shi, J.; Zhou, N.; Zhou, J.; Xu, B. Angew. Chem., Int. Ed. 2015, 54, 5705.  doi: 10.1002/anie.201412448

    42. [42]

      Zhao, F. F.; Shen, G. Z.; Chen, C. J.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Yan, X. H. Chem. Eur. J. 2014, 20, 6880.  doi: 10.1002/chem.201400348

    43. [43]

      Zhang, N.; Zhao, F. F.; Zou, Q. L.; Li, Y. X.; Ma, G. H.; Yan, X. H. Small 2016, 12, 5936.  doi: 10.1002/smll.201602339

    44. [44]

      Zou, Q.; Zhang, L.; Yan, X.; Wang, A.; Ma, G.; Li, J.; Möhwald, H.; Mann, S. Angew. Chem., Int. Ed. 2014, 53, 2366.  doi: 10.1002/anie.201308792

    45. [45]

      Liu, K.; Xing, R. R.; Chen, C. J.; Shen, G. Z.; Yan, L. Y.; Zou, Q. L.; Ma, G. H.; Mohwald, H.; Yan, X. H. Angew. Chem., Int. Ed. 2015, 54, 500.
       

    46. [46]

      Liu, K.; Kang, Y.; Ma, G. H.; Mohwald, H.; Yan, X. H. Phys. Chem. Chem. Phys. 2016, 18, 16738.  doi: 10.1039/C6CP01358A

    47. [47]

      Zou, Q. L.; Abbas, M.; Zhao, L. Y.; Li, S. K.; Shen, G. Z.; Yan, X. H. J. Am. Chem. Soc. 2017, 139, 1921.  doi: 10.1021/jacs.6b11382

    48. [48]

      Xing, R. R.; Jiao, T. F.; Yan, L. Y.; Ma, G. H.; Liu, L.; Dai, L. R.; Li, J. B.; Mohwald, H.; Yan, X. H. ACS Appl. Mater. Interfaces 2015, 7, 24733.  doi: 10.1021/acsami.5b07453

    49. [49]

      Xing, R. R.; Liu, K.; Jiao, T. F.; Zhang, N.; Ma, K.; Zhang, R. Y.; Zou, Q. L.; Ma, G. H.; Yan, X. H. Adv. Mater. 2016, 28, 3669.  doi: 10.1002/adma.201600284

    50. [50]

      Yan, X.; Zhu, P.; Fei, J.; Li, J. Adv. Mater. 2010, 22, 1283.  doi: 10.1002/adma.v22:11

    51. [51]

      Li, J. F.; Li, X. D.; Xu, J.; Wang, Y.; Wu, L. X.; Wang, Y. Q.; Wang, L. Y.; Lee, M.; Li, W. Chem. Eur. J. 2016, 22, 15751.  doi: 10.1002/chem.201602449

    52. [52]

      Li, J. F.; Chen, Z. J.; Zhou, M. C.; Jing, J. B.; Li, W.; Wang, Y.; Wu, L. X.; Wang, L. Y.; Wang, Y. Q.; Lee, M. Angew. Chem., Int. Ed. 2016, 55, 2592.  doi: 10.1002/anie.201511276

    53. [53]

      Adhikari, B.; Nanda, J.; Banerjee, A. Soft Matter 2011, 7, 8913.  doi: 10.1039/c1sm05907f

    54. [54]

      Ma, M.; Kuang, Y.; Gao, Y.; Zhang, Y.; Gao, P.; Xu, B. J. Am. Chem. Soc. 2010, 132, 2719.  doi: 10.1021/ja9088764

    55. [55]

      Zhou, J.; Du, X.; Gao, Y.; Shi, J.; Xu, B. J. Am. Chem. Soc. 2014, 136, 2970.  doi: 10.1021/ja4127399

    56. [56]

      Li, Y. X.; Yan, L. Y.; Liu, K.; Wang, J.; Wang, A. H.; Bai, S.; Yan, X. H. Small 2016, 19, 2575.

    57. [57]

      Li, Q.; Ma, H. C.; Jia, Y.; Li, J. B.; Zhu, B. H. Chem. Commun. 2015, 51, 7219.  doi: 10.1039/C5CC01554E

    58. [58]

      Wang, J.; Shen, G. Z.; Ma, K.; Jiao, T. F.; Liu, K.; Yan, X. H. Phys. Chem. Chem. Phys. 2016, 18, 30926.  doi: 10.1039/C6CP06150H

    59. [59]

      Fei, J. B.; Zhang, H.; Wang, A. H.; Qin, C. C.; Xue, H. M.; Li, J. B. Adv. Healthcare Mater. 2017, 6, 1601198.  doi: 10.1002/adhm.v6.7

    60. [60]

      Yan, X.; Li, J.; Möhwald, H. Adv. Mater. 2011, 23, 2796.  doi: 10.1002/adma.201100353

    61. [61]

      Liu, K.; Xing, R. R.; Li, Y. X.; Zou, Q. L.; Möhwald, H.; Yan, X. H. Angew. Chem., Int. Ed. 2016, 55, 12503.  doi: 10.1002/anie.201606795

    62. [62]

      Liu, K.; Yuan, C.; Zou, Q.; Xie, Z.; Yan, X. Angew. Chem., Int. Ed. 2017, 56, 7876.  doi: 10.1002/anie.201704678

    63. [63]

      Li, N.; Guo, C. H.; Duan, Z. Y.; Yu, L. Z.; Luo, K.; Lu, J.; Gu, Z. W. J. Mater. Chem. B 2016, 4, 3760.  doi: 10.1039/C6TB00688D

    64. [64]

      Zhang, D.; Qi, G. B.; Zhao, Y. X.; Qiao, S. L.; Yang, C.; Wang, H. Adv. Mater. 2015, 27, 6125.  doi: 10.1002/adma.201502598

    65. [65]

      Liu, Y.; Zhang, D.; Qiao, Z. Y.; Qi, G. B.; Liang, X. J.; Chen, X. G.; Wang, H. Adv. Mater. 2015, 27, 5034.  doi: 10.1002/adma.201501502

    66. [66]

      Abbas, M.; Zou, Q. L.; Li, S. K.; Yan, X. H. Adv. Mater. 2017, 29, 1605021.  doi: 10.1002/adma.v29.12

    67. [67]

      Han, K.; Zhang, W. Y.; Zhang, J.; Lei, Q.; Wang, S. B.; Liu, J. W.; Zhang, X. Z.; Han, H. Y. Adv. Funct. Mater. 2016, 26, 4351.  doi: 10.1002/adfm.v26.24

    68. [68]

      Ma, K.; Xing, R. R.; Jiao, T. F.; Shen, G. Z.; Chen, C. J.; Li, J. B.; Yan, X. H. ACS Appl. Mater. Interfaces 2016, 8, 30759.  doi: 10.1021/acsami.6b10754

    69. [69]

      Liu, K.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Möhwald, H.; Yan, X. H. Angew. Chem., Int. Ed. 2016, 55, 3036.  doi: 10.1002/anie.201509810

    70. [70]

      Sun, J. J.; Guo, Y.; Xing, R. R.; Jiao, T. F.; Zou, Q. L.; Yan, X. H. Colloids Surf., A 2017, 514, 155.  doi: 10.1016/j.colsurfa.2016.11.062

    71. [71]

      Chen, C. J.; Li, S. K.; Liu, K.; Ma, G. H.; Yan, X. H. Small 2016, 12, 4719.  doi: 10.1002/smll.v12.34

    72. [72]

      Qin, X.; Xie, W.; Tian, S.; Cai, J.; Yuan, H.; Yu, Z.; Butterfoss, G. L.; Khuong, A. C.; Gross, R. A. Chem. Commun. 2013, 49, 4839.  doi: 10.1039/c3cc41794h

    73. [73]

      Webber, M. J.; Newcomb, C. J.; Bitton, R.; Stupp, S. I. Soft Matter 2011, 7, 9665.  doi: 10.1039/c1sm05610g

    74. [74]

      Guilbaud, J.-B.; Rochas, C.; Miller, A. F.; Saiani, A. Biomacromolecules 2013, 14, 1403.  doi: 10.1021/bm4000663

    75. [75]

      Yang, Z.; Liang, G.; Xu, B. Acc. Chem. Res. 2008, 41, 315.  doi: 10.1021/ar7001914

    76. [76]

      Gao, Y.; Yang, Z.; Kuang, Y.; Ma, M.-L.; Li, J.; Zhao, F.; Xu, B. Biopolymers 2010, 94, 19.  doi: 10.1002/bip.21321

    77. [77]

      Zhou, J.; Du, X.; Yamagata, N.; Xu, B. J. Am. Chem. Soc. 2016, 138, 3813.  doi: 10.1021/jacs.5b13541

    78. [78]

      Gao, Y.; Shi, J.; Yuan, D.; Xu, B. Nat. Commun. 2012, 3, 1033.  doi: 10.1038/ncomms2040

    79. [79]

      Li, X.; Du, X.; Li, J.; Gao, Y.; Pan, Y.; Shi, J.; Zhou, N.; Xu, B. Langmuir 2012, 28, 13512.  doi: 10.1021/la302583a

    80. [80]

      Shi, J.; Du, X.; Yuan, D.; Zhou, J.; Zhou, N.; Huang, Y.; Xu, B. Biomacromolecules 2014, 15, 3559.  doi: 10.1021/bm5010355

    81. [81]

      Yuan, C.; Li, S.; Zou, Q.; Ren, Y.; Yan, X. Phys. Chem. Chem. Phys. 2017, 10.1039/c7cp01923h.  doi: 10.1039/c7cp01923h

  • 加载中
    1. [1]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    2. [2]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    5. [5]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    6. [6]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    7. [7]

      Mochou GAOShan MENGJinzhong ZHANGWenhua FENGShuo DONGJianping CHENYanbao ZHAOLaigui YURongrong YINGXueyan ZOU . Dual‐surface capped hydroxyapatite nano‐amendment with tuned alternate long‐short chain configuration for efficient adsorption towards multi‐heavy metal ions in complex‐contaminated systems. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1427-1438. doi: 10.11862/CJIC.20240431

    8. [8]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    9. [9]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    13. [13]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    14. [14]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    15. [15]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    16. [16]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    19. [19]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    20. [20]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

Metrics
  • PDF Downloads(151)
  • Abstract views(6280)
  • HTML views(2161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return