Citation: Wu Jiajia, Ji Zhenyuan, Shen Xiaoping, Miao Xuli, Xu Keqiang. Synthesis of γ-Fe2O3 Nanocubes Decorated Graphene/CdS Nanocomposites with Enhanced Photocatalytic Performance[J]. Acta Chimica Sinica, ;2017, 75(12): 1207-1214. doi: 10.6023/A17050220 shu

Synthesis of γ-Fe2O3 Nanocubes Decorated Graphene/CdS Nanocomposites with Enhanced Photocatalytic Performance

  • Corresponding author: Shen Xiaoping, xiaopingshen@163.com
  • Received Date: 21 May 2017
    Available Online: 10 December 2017

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20150507the National Natural Science Foundation of China 51602129the National Natural Science Foundation of China 51272094the Natural Science Foundation of Jiangsu Province BK20171295Project supported by the National Natural Science Foundation of China (Nos. 51272094, 51602129) and the Natural Science Foundation of Jiangsu Province (Nos. BK20171295, BK20150507)

Figures(10)

  • With Prussian blue (PB) as the precursor for γ-Fe2O3, the tri-component CdS/RGO/γ-Fe2O3 photocatalyst was prepared through loading PB nanocubes and CdS nanoparticles on graphene oxide (GO) nanosheets, followed by a calcination process in inert atmosphere (N2). The content of γ-Fe2O3 in the CdS/RGO/γ-Fe2O3 photocatalyst can be adjusted by changing the loading amount of PB, and the cubic morphology of PB was maintained after the calcination. The composition, structure, morphology and light absorption of the as-prepared products were investigated by X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (FT-IR), Raman spectroscopy and ultraviolet-visible (UV-vis) spectroscopy. The photocatalytic activity of the ternary photocatalysts was evaluated by the degradation of the organic pollutant of Rhodamine B (RhB) under visible-light irradiation. It was found that the degradation process of RhB follows pseudo-first-order kinetics. Compared to the bi-component CdS/RGO photocatalyst, the tri-component CdS/RGO/γ-Fe2O3 exhibited greatly enhanced photocatalytic activity, demonstrating that the γ-Fe2O3 played an important role in the photocatalytic process. The CdS/RGO/γ-Fe2O3 composite with PB loading amount of 12 mg exhibits the highest photocatalytic degradation efficiency of about 99.8% and the highest apparent reaction rate constant (k) value of about 0.03289 min-1, which is almost 2.9 times and 1.8 times higher than that of CdS and CdS/RGO, respectively. This result indicates that a suitable loading amount of γ-Fe2O3 is important to optimize the photocatalytic performance of the CdS/RGO/γ-Fe2O3 composites. Moreover, owing to the ferromagnetism of γ-Fe2O3, the CdS/RGO/γ-Fe2O3 photocatalyst could be easily separated from the reaction solution for recycling by a magnet. A possible photocatalytic mechanism was also proposed based on the photoluminescence (PL) characterization and the active species capture experiment. It was demonstrated that the enhanced photocatalytic degradation properties of CdS/RGO/γ-Fe2O3 composites can be ascribed to the excellent conductivity of RGO and the construction of Z-scheme heterostructure between CdS and γ-Fe2O3, which facilitate the transport and separation of photogenerated carriers.
  • 加载中
    1. [1]

      Aarthi, T.; Narahari, P.; Madras, G. J. Hazard. Mater. 2007, 149, 725.  doi: 10.1016/j.jhazmat.2007.04.038

    2. [2]

      Gu, S. H.; Wang, L. Z.; Zhang, J. L. Chin. J. Chem. 2017, 35, 153.  doi: 10.1002/cjoc.v35.2

    3. [3]

      Higashimoto, S.; Hikita, K.; Azuma, M. Chin. J. Chem. 2017, 35, 165.  doi: 10.1002/cjoc.v35.2

    4. [4]

      Wang, J. T.; Xiao, C.; Wu, X. Y. Chin. J. Chem. 2017, 35, 189.  doi: 10.1002/cjoc.v35.2

    5. [5]

      Li, X. D.; Zhang, Q. H.; Wang, H. Z. Chin. J. Chem. 2017, 35, 196.  doi: 10.1002/cjoc.v35.2

    6. [6]

      Qin, H. X.; Bian, Y. Y.; Zhang, Y. X. Chin. J. Chem. 2017, 35, 203.  doi: 10.1002/cjoc.v35.2

    7. [7]

      Cui, S. Z.; Yang, H. P.; Sun, H. H. Acta Chim. Sinica 2016, 74, 995.

    8. [8]

      Carey, J. H.; Lawrence, J.; Tosine, H. M. B. Environ. Contam. Tox. 1976, 16, 697.  doi: 10.1007/BF01685575

    9. [9]

      Wang, E. J.; Yang, H. Y.; Cao, Y. A. Acta Chim. Sinica 2009, 67, 2759(in Chinese).  doi: 10.3321/j.issn:0567-7351.2009.24.001
       

    10. [10]

      Bae, E.; Choi, W. Environ. Sci. Technol 2003, 37, 147.  doi: 10.1021/es025617q

    11. [11]

      Wang, Y. W.; Zhu, Y. H.; Yang, X. L. Chin. J. Chem. 2017, 35, 949.  doi: 10.1002/cjoc.v35.6

    12. [12]

      Chang, J.; Zhang, W. J.; Hong, C. Y. Chin. J. Chem. 2017, 35, 1016.  doi: 10.1002/cjoc.v35.6

    13. [13]

      Jiang, L. P.; Wang, S. J.; Shi, L. Y. Chin. J. Chem. 2017, 35, 183.  doi: 10.1002/cjoc.v35.2

    14. [14]

      Cheng, J. S.; Wang, W. H.; Zhu, W. J. Chin. J. Chem. 2016, 34, 53.  doi: 10.1002/cjoc.201500339

    15. [15]

      Wang, D. B.; Zhao, L. X.; Guo, L. H.; Zhang, H.; Wan, B.; Yang, Y. Acta Chim. Sinica 2015, 73, 388(in Chinese).
       

    16. [16]

      Bi, F.; Muhammad, F.; Liu, W. Chin. J. Chem. 2015, 33, 112.  doi: 10.1002/cjoc.v33.1

    17. [17]

      Abe, R.; Takata, T.; Sugihara, H. Chem. Commun. 2005, 30, 3829.

    18. [18]

      Higashi, M.; Abe, R.; Teramura, K. Chem. Phys. Lett. 2008, 452, 120.  doi: 10.1016/j.cplett.2007.12.021

    19. [19]

      Li, C. Q.; Luo, L. T.; Xiong, G. W. Acta Chim. Sinica 2010, 68, 1023(in Chinese).
       

    20. [20]

      Ba-Abbad, M. M.; Kadhum, A. A. H.; Mohamad, A. B. Int. J. Therm. Environ. Eng. 2010, 1, 37.  doi: 10.5383/ijtee.

    21. [21]

      Xie, Y. P.; Yu, Z. B.; Liu, G.; Ma, X. L.; Cheng, H. M. Energy. Environ. Sci. 2014, 7, 1895.  doi: 10.1039/c3ee43750g

    22. [22]

      Zhang, N.; Zhang, Y.; Pan, X.; Yang, M. Q.; Xu, Y. J. J. Phys. Chem. C, 2012, 116, 18023.  doi: 10.1021/jp303503c

    23. [23]

      Ye, X. J.; Dai, X.; Meng, S. G. Chin. J. Chem. 2017, 35, 217.  doi: 10.1002/cjoc.v35.2

    24. [24]

      Kashiath, L.; Namratha, K.; Byrappa, K. J. Alloy. Compd. 2016, 695, 799.

    25. [25]

      Lee, J.; Kim, Y.; Kim, J. K.; Kim, S.; Min, D.; Jang, D. Appl. Catal. B 2017, 205, 433.  doi: 10.1016/j.apcatb.2016.12.063

    26. [26]

      Khan, S.; Han, J. S.; Lee, S. Y. Chin. J. Chem. 2017, 35, 159.  doi: 10.1002/cjoc.v35.2

    27. [27]

      Cong, R. M.; Luo, Y. J.; Yu, H. Q. Acta Chim. Sinica 2012, 68, 1971(in Chinese).  doi: 10.3866/PKU.WHXB201206111
       

    28. [28]

      Li, H. J.; Zhou, Y.; Chen, L.; Luo, W. J.; Xu, Q. F.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Nanoscale 2013, 5, 11933.  doi: 10.1039/c3nr03493c

    29. [29]

      Vaquero, F.; Navarro, R. M.; Fierro, J. L. G. Appl. Catal. B 2017, 753.

    30. [30]

      Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. J. Am. Chem. Soc. 2011, 133, 10878.  doi: 10.1021/ja2025454

    31. [31]

      Li, Y. G.; Wei, X. L.; Li, H. J.; Wang, R. R.; Feng, J.; Yun, H.; Zhou, A. N. RSC Adv. 2015, 5, 14704.  doi: 10.1039/C4RA13400A

    32. [32]

      Liu, X. J.; Pan, L. K.; Lv, T.; Zhu, G.; Sun, Z.; Sun, C. Q. Chem. Commun. 2011, 47, 11984.  doi: 10.1039/c1cc14875c

    33. [33]

      Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2010, 4, 7303.  doi: 10.1021/nn1024219

    34. [34]

      Zhang, N.; Yang, M. Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y. J. Chem. Rev. 2015, 115, 10307.  doi: 10.1021/acs.chemrev.5b00267

    35. [35]

      Quan, Q.; Lin, X.; Zhang, N.; Xu, Y. J. Nanoscale 2017, 9, 2398.  doi: 10.1039/C6NR09439B

    36. [36]

      Han, C.; Zhang, N.; Xu, Y. J. Nano Today 2016, 11, 351.  doi: 10.1016/j.nantod.2016.05.008

    37. [37]

      Yuan, L.; Yang, M. Q.; Xu, Y. J. Nanoscale 2014, 6, 6335.  doi: 10.1039/c4nr00116h

    38. [38]

      Liu, Y.; Zhou, L.; Hu, Y.; Guo, C. F.; Qian, H. S.; Zhang, F. M.; Lou, X. W. J. Mater. Chem. 2011, 21, 18359.  doi: 10.1039/c1jm13789a

    39. [39]

      Li, N.; Zhang, J.; Tian, Y.; Zhao, J. H.; Zuo, W. Chem. Eng. J. 2017, 308, 377.  doi: 10.1016/j.cej.2016.09.093

    40. [40]

      Chen, Y.; Liu, K. R. J. Alloy. Compd. 2017, 697, 161.  doi: 10.1016/j.jallcom.2016.12.153

    41. [41]

      Jia, X. H.; Dai, R. R.; Lian, D. D.; Han, S.; Wu, X. Y.; Song, H. J. Appl. Surf. Sci. 2017, 392, 268.  doi: 10.1016/j.apsusc.2016.09.014

    42. [42]

      Wang, L.; Wei, H. W.; Fan, Y. J.; Gu, X.; Zhan, J. H. J. Phys. Chem. C 2009, 113, 14119.  doi: 10.1021/jp902866b

    43. [43]

      Liu, Y.; Yu, L.; Hu, Y.; Guo, C. F.; Zhang, F. M.; Lou, X. W. Nanoscale 2012, 4, 183.  doi: 10.1039/C1NR11114K

    44. [44]

      Zhang, L.; Wu, H. B.; Madhavi, S., ; Hng, H. H.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 17388.  doi: 10.1021/ja307475c

    45. [45]

      He, H.; Klinowski, J.; Forster, M. Chem. Phys. Lett. 1998, 287, 53.  doi: 10.1016/S0009-2614(98)00144-4

    46. [46]

      Singh, A. P.; Mishra, M.; Sambyal, P.; Gupta, B. K.; Singh, A.; Dhawan, S. K. J. Mater. Chem. A 2014, 2, 3581.  doi: 10.1039/C3TA14212D

    47. [47]

      Meng, N. N.; Zhou, Y. F.; Nie, W. Y.; Chen, P. P. J. Nanopart. Res. 2016, 18, 241.  doi: 10.1007/s11051-016-3522-y

    48. [48]

      Kudin, K. N.; Ozbas, B.; Schniepp, H. C. Nano Lett. 2008, 8, 36.  doi: 10.1021/nl071822y

    49. [49]

      Sirivisoot, S.; Harrison, B. S. Int. J. Nanomedicine 2015, 10, 4447.

    50. [50]

      Xu, J.; Wang, L.; Cao, X. J. Chem. Eng. J. 2016, 283, 816.  doi: 10.1016/j.cej.2015.08.018

    51. [51]

      Jia, L.; Wang, D. H.; Huang, Y. X.; Xu, A. W.; Yu, H. Q. J. Phys. Chem. C 2011, 115, 11466.

    52. [52]

      Guo, R. Q.; Fang, L.; Dong, W.; Zheng, F. G.; Shen, M. R. J. Mater. Chem. 2011, 21, 18645.  doi: 10.1039/c1jm13072b

    53. [53]

      Mondal, S.; Sunhu, S.; Bhattacharya, S.; Saha, S. K. J. Phys. Chem. C 2015, 119, 27749.  doi: 10.1021/acs.jpcc.5b08116

  • 加载中
    1. [1]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    4. [4]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    10. [10]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    12. [12]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    20. [20]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

Metrics
  • PDF Downloads(7)
  • Abstract views(1934)
  • HTML views(325)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return