Citation: Lin Yao, Ying Yilun, Gao Rui, Wang Huifeng, Long Yitao. Analysis of Single-entity Anisotropy with a Solid-state Nanopore[J]. Acta Chimica Sinica, ;2017, 75(7): 675-678. doi: 10.6023/A17040191 shu

Analysis of Single-entity Anisotropy with a Solid-state Nanopore

  • Corresponding author: Ying Yilun, yilunying@ecust.edu.cn Wang Huifeng, whuifeng@ecust.edu.cn
  • Received Date: 30 April 2017

    Fund Project: the National Natural Science Foundation of China 21505043the Fundamental Research Funds for the Central Universities 222201714012the Fundamental Research Funds for the Central Universities 222201717003the National Natural Science Foundation of China 21327807the Fundamental Research Funds for the Central Universities 222201718001the National Natural Science Foundation of China 21421004

Figures(3)

  • Solid-state nanopore has emerging as a promising tool for detection and analysis of single molecules due to its advantages of high stability, easy control of diameter and channel length, and the potential for integration into devices and arrays.Therefore, there are intensive studies regarding nanopore-based detection of DNAs, proteins, polymers and other small molecules.The electrochemical confined space of nanopore could efficiently convert the information in single biological molecules with anisotropy characters into measurable electrochemical signatures with high temporal resolution.The anisotropy characters of each analyte, due to its featured physical and chemical properties in different directions, strongly affects the translocation behavior of each single entity (single molecule, single nanoparticle, etc.).To analyze the single-entity anisotropy effects on nanopore translocation, here, we employed gold nanorods (GNRs) as a model for single entities with anisotropy to investigate its translocation behavior through a solid-state nanopore.We performed the GNRs translocation experiments in 10 mmol·L-1 KCl (pH 8) electrolyte solution with a 100 nm SiNx solid-state nanopore.The current trace of GNRs translocation through nanopores had been recorded with an ultra-sensitive current amplifier at a sampling rate of 100 kHz filtered at 5 kHz via a low-pass Bessel filter.At applied voltage of-600 mV, two types of characteristic current blockades were observed when single GNRs translocate through the pore.We found this two types of blockades are mainly related to two translocation orientation of GNRs due to its anisotropy.The smaller current blockades are due to the GNR passing through the pore vertically while the larger current blockades are due to the GNR passing through the pore horizontally.To verify our observation of this two types of GNRs translocation events, we employed a simple model which is based on the relationship between the blockade magnitude and the exclude ion volume.The calculated current blockades of two types of GNRs translocation events agree well with the experimental values.These results illustrate that the anisotropy of single entity is an important factor that should be taken into consideration in nanopore translocation.This work will lead to a better understanding of the translocation behavior of single entity with anisotropy in the electrochemical confined space of nanopore.Such understanding is vital to the development of the solid-state nanopore system as a useful single molecule analytical device.
  • 加载中
    1. [1]

      Miles, B. N.; Ivanov, A. P.; Wilson, K. A.; Doğan, F.; Japrung, D.; Edel, J. B. Chem. Soc. Rev. 2013, 42, 15.  doi: 10.1039/C2CS35286A

    2. [2]

      Liu, L.; Wu, H.-C. Angew. Chem. Int. Ed. 2016, 55, 15216.  doi: 10.1002/anie.v55.49

    3. [3]

      Lin, Y.; Shi, X.; Liu, S.-C.; Ying, Y.-L.; Li, Q.; Gao, R.; Fathi, F.; Long, Y.-T.; Tian, H. Chem. Commun. 2017, 53, 3539.  doi: 10.1039/C7CC00060J

    4. [4]

      Zhang, Y.; Wu, G.; Ma, J.; Yuan, Z.; Si, W.; Liu, L.; Sha, J.; Chen, Y. Sci. China Technol. Sci. 2015, 58, 519.

    5. [5]

      Wang, H.-Y.; Ying, Y.-L.; Li, Y.; Kraatz, H.-B.; Long, Y.-T. Anal. Chem. 2011, 83, 1746.  doi: 10.1021/ac1029874

    6. [6]

      Hu, Y.-X.; Ying, Y.-L.; Gu, Z.; Cao, C.; Yan, B.-Y.; Wang, H.-F.; Long, Y.-T. Chem. Commun. 2016, 52, 5542.  doi: 10.1039/C6CC01292B

    7. [7]

      Kwak, D. K.; Chae, H.; Lee, M. K.; Ha, J. H.; Goyal, G.; Kim, M. J.; Kim, K. B.; Chi, S. W. Angew. Chem. Int. Ed. 2016, 55, 5713.  doi: 10.1002/anie.201511601

    8. [8]

      Ying, Y.-L.; Zhang, J.-J.; Gao, R.; Long, Y.-T. Angew. Chem. Int. Ed. 2013, 52, 13154.  doi: 10.1002/anie.201303529

    9. [9]

      Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734(in Chinese).
       

    10. [10]

      Long, Y.-T.; Zhang, M.-N. Sci. China Ser. B 2009, 52, 731.

    11. [11]

      Ying, Y.-L.; Zhang, X.; Liu, Y.; Xue, M.-Z.; Li, H.-L.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44(in Chinese).
       

    12. [12]

      Dekker, C. Nat. Nanotechnol. 2007, 2, 209.  doi: 10.1038/nnano.2007.27

    13. [13]

      Guo, W.; Tian, Y.; Jiang, L. Acc. Chem. Res. 2013, 46, 2834.  doi: 10.1021/ar400024p

    14. [14]

      Bell, N. A. W.; Keyser, U. F. J. Am. Chem. Soc. 2015, 137, 2035.  doi: 10.1021/ja512521w

    15. [15]

      Plesa, C.; Ruitenberg, J. W.; Witteveen, M. J.; Dekker, C. Nano Lett. 2015, 15, 3153.  doi: 10.1021/acs.nanolett.5b00249

    16. [16]

      Mahmood, M. A. I.; Ali, W.; Adnan, A.; Iqbal, S. M. J. Phys. Chem. B 2014, 118, 5799.  doi: 10.1021/jp411820w

    17. [17]

      Prabhu, A. S.; Jubery, T. Z. N.; Freedman, K. J.; Mulero, R.; Dutta, P.; Kim, M. J. J. Phys.:Condens. Matter 2010, 22, 454107.  doi: 10.1088/0953-8984/22/45/454107

    18. [18]

      Lan, W. J.; Holden, D. A.; Zhang, B.; White, H. S. Anal. Chem. 2011, 83, 3840.  doi: 10.1021/ac200312n

    19. [19]

      Arjmandi, N.; Van Roy, W.; Lagae, L.; Borghs, G. Anal. Chem. 2012, 84, 8490.  doi: 10.1021/ac300705z

    20. [20]

      Wang, Y.; Kececi, K.; Mirkin, M.; Mani, V. Chem. Sci. 2013, 4, 655.  doi: 10.1039/C2SC21502K

    21. [21]

      Venta, K.; Wanunu, M.; Drndić, M. Nano Lett. 2013, 13, 423.  doi: 10.1021/nl303576q

    22. [22]

      Venta, K. E.; Zanjani, M. B.; Ye, X.; Danda, G.; Murray, C. B.; Lukes, J. R.; Drndić, M. Nano Lett. 2014, 14, 5358.  doi: 10.1021/nl502448s

    23. [23]

      Goyal, G.; Freedman, K. J.; Kim, M. J. Anal. Chem. 2013, 85, 8180.  doi: 10.1021/ac4012045

    24. [24]

      Talaga, D. S.; Li, J. J. Am. Chem. Soc. 2009, 131, 9287.  doi: 10.1021/ja901088b

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    3. [3]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    4. [4]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    9. [9]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    10. [10]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    13. [13]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    14. [14]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    15. [15]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    16. [16]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    17. [17]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    18. [18]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    19. [19]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    20. [20]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

Metrics
  • PDF Downloads(46)
  • Abstract views(2479)
  • HTML views(392)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return