Induction Stabilization and Fluorescence-based Switch-on Detection of G-Quadruplex by Zinc (Ⅱ)-salen Complex
- Corresponding author: Zhou Xiang, xzhou@whu.edu.cn †These authors contributed equally to this work
Citation:
Wang Yafen, Zhang Xiong, Liu Chaoxing, Zhou Xiang. Induction Stabilization and Fluorescence-based Switch-on Detection of G-Quadruplex by Zinc (Ⅱ)-salen Complex[J]. Acta Chimica Sinica,
;2017, 75(7): 692-698.
doi:
10.6023/A17040162
Bhasikuttan, A. C.; Mohanty, J. Chem. Commun. 2015, 51, 7581.
doi: 10.1039/C4CC10030A
Liu, C.; Chen, Y.; Wang, Y.; Wu, F.; Zhang, X.; Yang, W.; Wang, J.; Chen, Y.; He, Z.; Zou, G.; Wang, S.; Zhou, X. Nano Res. 2017, DOI:10.1007/s12274-017-1445-2.
doi: 10.1007/s12274-017-1445-2
Liu, C.; Wang, Y.; Zhang, X.; Wu, F.; Yang, W.; Zou, G.; Yao, Q.; Wang, J.; Chen, Y.; Wang, S.; Zhou, X. Chem. Sci. 2017, DOI:10.1039/C7SC00637C.
doi: 10.1039/C7SC00637C
Tian, T.; Xiao, H.; Weng, X.; Wang, S.; Zhou, X. Sci. Sin. Chim. 2013, 42, 1700(in Chinese).
Biffi, G.; Tannahill, D.; McCafferty, J.; Balasubramanian, S. Nat. Chem. 2013, 5, 182.
doi: 10.1038/nchem.1548
Chen, S. B.; Hu, M. H.; Liu, G. C.; Wang, J.; Ou, T. M.; Gu, L. Q.; Huang, Z. S.; Tan, J. H. J. Am. Chem. Soc. 2016, 138, 10382.
doi: 10.1021/jacs.6b04799
Wang, S.; Min, Y.; Wang, J.; Liu, C.; Fu, B.; Wu, F., Wu, L; Qiao, Z.; Song, Y; Xu, G.; Wu, Z.; Huang, G.; Peng, N.; Huang, R.; Mao, W.; Peng, S.; Chen, Y.; Zhu, Y.; Tian, T.; Zhang, X.; Zhou, X. Sci. Adv. 2016, 2, e1501535
doi: 10.1126/sciadv.1501535
Wang, S.; Zhang, Q.; Wang, J.; Ge, X.; Song, Y.; Wang, Y.; Li, X.; Fu, B.; Xu, G.; Shu, B.; Gong, P.; Zhang, B.; Tian, T.; Zhou, X. Cell Chem. Biol. 2016, 23, 1113.
doi: 10.1016/j.chembiol.2016.07.019
Zheng, X. H; Mu, G.; Tan, C. P.; Cao, G.; Mao, Z. W. Sci. Sin. Chim. 2014, 44, 484(in Chinese).
Lin, S.; Xu, M.; Yuan, G. Chin. Chem. Lett. 2012, 23, 329.
doi: 10.1016/j.cclet.2011.11.002
Yan, J.; Guan, Y. Progr. Anatom. Sci. 2015, 21, 419.
Zheng, X.; Liu, H.; Xia, L.; Mao, Z. Chin. Pharmacol. Bull. 2016, 32, 751(in Chinese).
doi: 10.3969/j.issn.1001-1978.2016.06.003
Müller, S.; Kumari, S.; Rodriguez, R.; Balasubramanian, S. Nat. Chem. 2010, 2, 1095.
doi: 10.1038/nchem.842
Zhang, C.; Wu, W.; Lu, Y.; Gu, L.; Huang, Z. S. Acta Chim. Sinica 2008, 66, 953(in Chinese).
doi: 10.3321/j.issn:0567-7351.2008.08.020
Zheng, K.; Zhang, D.; Zhang, L.; Hao, Y.; Zhou, X.; Tan, Z. J. Am. Chem. Soc. 2011, 133, 1475.
doi: 10.1021/ja108972e
Ou, Z. Z.; Ju, B. L.; Gao, Y. Y.; Wang, Z. C.; Huang, G.; Qian, Y. M. Acta Phys.-Chim. Sin. 2015, 31, 2386(in Chinese).
doi: 10.3866/PKU.WHXB201510137
Meng, C.; Wang, S.; Zhang, K.; Jin, H.; Chen, X.; Hu, M.; Xiong, J. Acta Chim. Sinica 2011, 69, 1173(in Chinese).
Reed, J. E.; Arnal, A. A.; Neidle, S.; Vilar, R. J. Am. Chem. Soc. 2006, 128, 5992.
doi: 10.1021/ja058509n
Xu, L.; Wu, W.; Ding, J.; Feng, S.; Xing, X.; Deng, M.; Zhou, X. RSC Adv. 2012, 2, 894.
doi: 10.1039/C1RA00851J
Yu, L.; Gai, W.; Yang, Q.; Xiang, J.; Sun, H.; Li, Q.; Wang, L.; Guan, A.; Tang, Y. Chin. Chem. Lett. 2015, 26, 705.
doi: 10.1016/j.cclet.2015.02.002
Wu, F.; Liu, C.; Chen, Y.; Yang, S.; Xu, J.; Huang, R.; Wang, X.; Li, M.; Liu, W.; Mao, W.; Zhou, X. Sens. Actuators, B 2016, 236, 268.
doi: 10.1016/j.snb.2016.05.162
Tera, M.; Iida, K.; Ikebukuro, K.; Seimiya, H.; Shin-ya, K.; Nagasawa, K. Org. Biomol. Chem. 2010, 8, 2749.
doi: 10.1039/c002117b
Chen, Y.; Yan, S.; Yuan, L.; Zhou, Y.; Song, Y.; Xiao, H.; Weng, X.; Zhou, X. Org. Chem. Front. 2014, 1, 267.
doi: 10.1039/c3qo00048f
Xu, S.; Li, Q.; Xiang, J.; Yang, Q.; Sun, H.; Guan, A.; Wang, L.; Liu, Y.; Yu, L.; Shi, Y.; Chen, H.; Tang, Y. Nucleic Acids Res. 2015, 43, 9575.
Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P. I.; Bhasikuttan, A. C. J. Am. Chem. Soc. 2013, 135, 367.
doi: 10.1021/ja309588h
Chen, S. B.; Wu, W. B.; Hu, M. H.; Ou, T. M.; Gu, L. Q.; Tan, J. H.; Huang, Z. S. Chem. Commun. 2014, 50, 12173.
doi: 10.1039/C4CC05394J
Lin, S.; Gao, W.; Tian, Z.; Yang, C.; Lu, L.; Mergny, J.; Leung, C.; Ma, D. Chem. Sci. 2015, 6, 4284.
doi: 10.1039/C5SC01320H
Ji, X.; Yao, C.; Wan, Y.; Song, H.; Xin, P.; Cui, H.; Zheng, C.; Deng, S. Chin. J. Chem. 2016, 34, 331.
doi: 10.1002/cjoc.v34.3
Liu, X.; Yang, Y.; Hua, X.; Feng, X.; Su, S.; Huang, Y.; Fan, Q.; Wang, L.; Huang, W. Chin. J. Chem. 2015, 33, 981.
doi: 10.1002/cjoc.v33.8
Shao, Y.; Li, C.; Zhou, X.; Chen, P.; Yang, Z.; Li, Z.; Liu, D. Acta Chim. Sinica 2015, 73, 815(in Chinese).
Liu, X.; Wang, Y.; Huang, Y.; Feng, X.; Fan, Q.; Huang, W. Acta Chim. Sinica 2016, 74, 664(in Chinese).
Zhou, J.; Yuan, G. Acta Chim. Sinica 2007, 65, 1728(in Chinese).
doi: 10.3321/j.issn:0567-7351.2007.16.035
Wei, Q.; Qu, F.; Gong, R. Prog. Biochem. Biophys. 2015, 42, 624(in Chinese).
Rankin, S.; Reszka, A. P.; Huppert, J.; Zloh, M.; Parkinson, G. N.; Todd, A. K.; Ladame, S.; Balasubramanian, S.; Neidle, S. J. Am. Chem. Soc. 2005, 127, 10584.
doi: 10.1021/ja050823u
Chung, W. J.; Heddi, B.; Schmitt, E.; Lim, K. W.; Mechulam, Y.; Phan, A. T. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 2729.
doi: 10.1073/pnas.1418718112
Zhao, A.; Zhao, C.; Ren, J.; Qu, X. Chem. Commun. 2016, 52, 1365.
doi: 10.1039/C5CC08401F
Fu, B.; Huang, J.; Chen, Y.; Wang, Y.; Xue, T.; Xu, G.; Wang, S.; Zhou, X. Chem. Commun. 2016, 52, 10052.
doi: 10.1039/C6CC04866H
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
Meng-Yin Wang , Ruo-Bei Huang , Jian-Feng Xiong , Jing-Hua Tian , Jian-Feng Li , Zhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
Zehua Zhang , Haitao Yu , Yanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Yihan Xue , Xue Han , Jie Zhang , Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Step 1: 2, 4-dihydroxybenzaldehyde (2.76 g, 20 mmol), 1-(2-chloroethyl)-pyrrolidine hydrochloride (3.40 g, 20 mmol) and potassium carbonate (5.56 g, 40 mmol) were dissolved in 150 mL acetone. After reflux for 20 h in Ar atmosphere, the product was dried in vacuum, then extraction by ethyl acetate (200 mL) three times. Finally, the product 2-hydroxy-4-(2-(pyrrolidin-1-yl)ethoxy)benzaldehyde was purified by silica gel column chromatography using eluent CH2Cl2/MeOH (V/V=30:1~20:1) to yield 3.24 g (68.8%) as a pale solid. Step 2: 2-hydroxy-4-(2-(pyrrolidin-1-yl)ethoxy)benzaldehyde (285 mg, 1.2 mmol) and diaminomaleonitrile (65 mg, 0.6 mmol) were dissolved into 10 mL methanol. After 20 min stirring at 60 ℃ in dark atmosphere, the Zinc acetate dehydrate (132 mg, 0.6 mmol) was added in the solution for further 2 h reaction time. The final product Zinc(Ⅱ)-salen Complex (ZSC) was obtained by silica gel column chromatography using eluent CH2Cl2/MeOH/Et3N (V/V/V=65:3:1) to yield 245 mg (67.7%) as a red powder.
a. The mixture of 1 μL DNA (100 μmol/L) and 10 μL ZSC (200 μmol/L) were incubated in 100 mmol/L K+ Tris-HCl (10 mmol/L, pH 7.2) buffer at 37 ℃ for 30 min. b. The mixture of 1 μL DNA (100 μmol/L) and 10 μL ZSC (200 μmol/L) were incubated in 10 mmol/L Tris-HCl (pH 7.2) buffer at 37 ℃ for 30 min
a. The fluorescence spectra of UspBQ1 in different concentration incubated with 10 μmol/L ZSC under the condition of 10 mmol/L Tris-HCl (pH 7.2) at 37 ℃ for 30 min. b. Analysis of data about fluorescence intensity dependence on different DNA concentration shown in (a). c. CD spectra of UspBQ1 under different condition. d. The melting curves of UspBQ1 under the condition of 100 mmol/L K+ and100 mmol/L K+ with 10 μmol/L ZSC respectively
a. The fluorescence spectra of ckit in different concentration incubated with 10 μmol/L ZSC under the condition of 10 mmol/L Tris-HCl (pH 7.2) at 37 ℃ for 30 min. b. Analysis of data about fluorescence intensity dependence on different DNA concentration shown in (a). c. CD spectra of ckit under different condition. d. The melting curves of ckit under the condition of 100 mmol/L K+and100 mmol/L K+with 10 μmol/L ZSC respectively
a. The fluorescence spectra of ZG4 in different concentration incubated with 10 μmol/L ZSC under the condition of 10 mmol/L Tris-HCl (pH 7.2) at 37 ℃ for 30 min. b. Analysis of data about fluorescence intensity dependence on different DNA concentration shown in (a). c and d. CD spectra of ZG4 under different conditions