Citation: Sun Guofeng, Su Min, Fang Jie, Borzov Maxim, Nie Wanli. Research of the Stereoselectivity and Mechanism of the Hydroboration Reaction Between B(C6F5)3/Ammonium Chloride Systems with Terminal Alkyne[J]. Acta Chimica Sinica, ;2017, 75(8): 824-830. doi: 10.6023/A17040141 shu

Research of the Stereoselectivity and Mechanism of the Hydroboration Reaction Between B(C6F5)3/Ammonium Chloride Systems with Terminal Alkyne

  • Received Date: 6 April 2017
    Available Online: 23 August 2017

    Fund Project: Scientific Research Fund of Sichuan Educational Department and Leshan Technology Division 15ZB0256Project supported by the National Natural Science Foundation of China (No.21542011), Scientific Research Fund of Sichuan Educational Department and Leshan Technology Division (Nos.15ZB0256, Z14GZ010)Scientific Research Fund of Sichuan Educational Department and Leshan Technology Division Z14GZ010the National Natural Science Foundation of China 21542011

Figures(6)

  • Stereoselective hydroboration reaction of alkynes has been considered as one of the most important organic reaction. To date a handful of metal-catalyzed systems have been demonstrated to achieve trans-hydroboration of alkynes. This paper describes the first non-metal-catalyzed systems which could stereoselectively hydroborate the terminal alkynes in a trans-configuration. The Lewis acid B(C6F5)3 and ammonium chloride have been used as the reaction substrates, and phenylsilane as the hydride source. The hydroboration reaction could be performed in a one-pot procedure by mixing of B(C6F5)3, ammonium chloride and silane together in an equivalent amount. But this one-pot reaction is not so nice since there is always mixed with the ammonium hydroborate[R2NH2]+[H-B(C6F5)3]- intermediates products. A series of ammonium hydroborates prepared from the corresponding primary, secondary, tertiary and quaternary amine hydrochlorides have been isolated, and used in the directly hydroboration with terminal alkynes. To our surprise the ammonium hydroborate[R2NH2]+[H-B(C6F5)3]- could not react with the alkynes alone. When using[R2NH2]+[H-B(C6F5)3]- to react with alkynes, trace amount of catalytic Lewis acid B(C6F5)3 is necessary to firstly activate the carbon-carbon triple bonds and form the crucial zwitterionic σ-complexes. The mechanism study has shown that different from the typical Lewis acid/Lewis base FLPs system reacted with alkynes, in this B(C6F5)3/ammonium chloride system the ammonium chloride plays an important role on the stereoselective control of the reaction. The week interaction between the Cl ion and B(C6F5)3 in the σ-complexes has not only slowed down the unfavorite 1, 1-carboboration reaction, but also stabilized the σ-complexes which has offer the chance for the nucleophilic reagent to attack the reaction center in a cis-or trans-mode. In our experiment the bulky ion[H-B(C6F5)3]-could only attach the active alkynes from the trans-side and form the Z-hydroboration product. This work demonstrates that the combination of the ammonium halides with the Lewis acid B(C6F5)3 could act as a novel "frustrated Lewis pair" to activate alkynes, and will enable the development of even more sophisticated FLP and related catalyzed reactions.
  • 加载中
    1. [1]

      Kropp, M. A.; Baillargeon, M.; Park, K. M.; Ahamidapaty, K.; Schuster, G. B. J. Am. Chem. Soc. 1991, 113, 2155.  doi: 10.1021/ja00006a038

    2. [2]

      Ohmura, T.; Yamamoto, Y.; Miyaura, N. J. Am. Chem. Soc. 2000, 122, 4990.  doi: 10.1021/ja0002823

    3. [3]

      Gunanathan, C.; Hoelscher, M.; Pan, F.; Leitner, W. J. Am. Chem. Soc. 2012, 134, 14349.  doi: 10.1021/ja307233p

    4. [4]

      Obligacion, J. V.; Neely, J. M.; Yazdani, A. N.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2015, 137, 5855.  doi: 10.1021/jacs.5b00936

    5. [5]

    6. [6]

      Xu, S.-M.; Zhang, Y.-Z.; Li, B.; Liu, S. H.-Y. J. Am. Chem. Soc. 2016, 138(44), 14566.  doi: 10.1021/jacs.6b09759

    7. [7]

    8. [8]

      Bismuto, A.; Thomas, S. P.; Cowley, M. J. Angew. Chem., Int. Ed. 2016, 55, 15356.  doi: 10.1002/anie.v55.49

    9. [9]

      Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.  doi: 10.1126/science.1134230

    10. [10]

      Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880.  doi: 10.1021/ja067961j

    11. [11]

      Chen, D.-J.; Wang, Y.; Klankermayer, J. Angew. Chem., Int. Ed. 2010, 49, 9475.  doi: 10.1002/anie.201004525

    12. [12]

      Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.  doi: 10.1002/anie.200903708

    13. [13]

      Stephan, D. W. Acc. Chem. Res. 2015, 48, 306.  doi: 10.1021/ar500375j

    14. [14]

      Chen, C.; Kehr, G..; Fröhlich, R.; Erker, G. J. Am. Chem. Soc. 2010, 132, 13594.  doi: 10.1021/ja106365j

    15. [15]

      Chen, C.; Voss, T.; Fröhlich, R.; Kehr, G.; Erker, G. Org. Lett. 2011, 13, 62.  doi: 10.1021/ol102544x

    16. [16]

      Jiang, C.; Blacque, O.; Berke, H. Organometallics 2010, 29, 125.  doi: 10.1021/om9008636

    17. [17]

      Reddy, J. S.; Xu, B.-H.; Mahdi, T.; Fröhlich, R.; Kehr, G.; Stephan, D. W.; Erker, G. Organometallics 2012, 31, 5638.  doi: 10.1021/om3006068

    18. [18]

      Nie, W.-L.; Klare, H. F. T.; Oestreich, M.; FrÖhlich, R.; Kehr, G.; Erker, G. Z. Naturforsch. 2012, 67b, 987.

    19. [19]

      Xu, Y.-Y.; Li, Z.; Borzov, M.; Nie, W.-L. Chem. Prog. 2012, 24(8), 1526.
       

    20. [20]

      Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1203.
       

    21. [21]

      Hu, X.; Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2015, 73, 1025.  doi: 10.3866/PKU.WHXB201504141
       

    22. [22]

      Wen, Z.-G.; Tian, C.; Jiang, Y.; Borzov, M.; Nie, W.-L. Acta Chim. Sinica 2016, 74, 498
       

    23. [23]

    24. [24]

      Nie, W.-L.; Sun, G.-F.; Tian, C.; Borzov, M. Naturforsch. 2016, 71(10) b, 1029.

    25. [25]

  • 加载中
    1. [1]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    2. [2]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    5. [5]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    10. [10]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    11. [11]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    18. [18]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    19. [19]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    20. [20]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

Metrics
  • PDF Downloads(10)
  • Abstract views(3042)
  • HTML views(734)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return