Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZⅥ)
- Corresponding author: Ling Lan, linglan@tongji.edu.cn Zhang Weixian, zhangwx@tongji.edu.cn
Citation:
Xia Xuefen, Hua Yilong, Huang Xiaoyue, Ling Lan, Zhang Weixian. Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZⅥ)[J]. Acta Chimica Sinica,
;2017, 75(6): 594-601.
doi:
10.6023/A17030099
Mirza, A.; Ramachandran, V. Removal of Arsenic and Selenium from Wastewaters——A Review, Minerals, Metals & Materials Society, Warrendale, PA, United States, 1996.
Cui, G.; Fu, Y.; Luo, J.; Liu, P.; Ding, A. Acta Chim. Sinica 2012, 70, 1059.
Torres, J.; Pintos, V.; Gonzatto, L.; Domínguez, S.; Kremer, C.; Kremer, E. Chem. Geol. 2011, 288, 32.
Missana, T.; Alonso, U.; Scheinost, A.; Granizo, N.; García-Gutiérrez, M. Geochim. Cosmochim. Acta 2009, 73, 6205.
doi: 10.1016/j.gca.2009.07.005
Winkel, L. H. E.; Johnson, C. A.; Lenz, M.; Grundl, T.; Leupin, O. X.; Amini, M.; Charlet, L. Environ. Sci. Technol. 2012, 46, 571.
doi: 10.1021/es203434d
Korte, N. E.; Fernando, Q. Crit. Rev. Environ. Control 1991, 21, 1.
doi: 10.1080/10643389109388408
Hamilton, S. J. Sci. Total Environ. 2004, 326, 1.
doi: 10.1016/j.scitotenv.2004.01.019
Cui, G.; Guo, Y.; Liu, P. Acta Chim. Sinica 2012, 70, 2525.
doi: 10.3866/PKU.WHXB201208222
Yamani, J. S.; Lounsbury, A. W.; Zimmerman, J. B. Water Res. 2016, 88, 889.
doi: 10.1016/j.watres.2015.11.017
Mohan, D.; Pittman, C. U. J. Hazard. Mater. 2007, 142, 1.
doi: 10.1016/j.jhazmat.2007.01.006
Olegario, J. T.; Yee, N.; Miller, M.; Sczepaniak, J.; Manning, B. J. Nanopart. Res. 2010, 12, 2057.
doi: 10.1007/s11051-009-9764-1
Ramos, M. A.; Yan, W.; Li, X. Q.; Koel, B. E.; Zhang, W. X. J. Phys. Chem. C 2009, 113, 14591.
Kanel, S. R.; Manning, B.; Charlet, L.; Choi, H. Environ. Sci. Technol. 2005, 39, 1291.
doi: 10.1021/es048991u
Ling, L.; Pan, B.; Zhang, W. X. Water Res. 2015, 71, 274.
doi: 10.1016/j.watres.2015.01.002
Yan, W.; Ramos, M. A. V.; Koel, B. E.; Zhang, W. X. J. Phys. Chem. C 2012, 116, 5303.
doi: 10.1021/jp208600n
Kanel, S. R.; Greneche, J. M.; Choi, H. Environ. Sci. Technol. 2006, 40, 2045.
doi: 10.1021/es0520924
Xia, X.; Ling, L.; Zhang, W. X. Environ. Sci.:Nano 2017, 4, 52.
doi: 10.1039/C6EN00231E
Xia, X.; Ling, L.; Zhang, W. X. Chemosphere 2017, 168, 1597.
doi: 10.1016/j.chemosphere.2016.11.150
Ling, L.; Zhang, W. X. Environ. Sci. Technol. Lett. 2014, 1, 305.
doi: 10.1021/ez5001512
Yan, W.; Vasic, R.; Frenkel, A. I.; Koel, B. E. Environ. Sci. Technol. 2012, 46, 7018.
doi: 10.1021/es2039695
Yan, W.; Lien, H.-L.; Koel, B. E.; Zhang, W. X. Environ. Sci.:Proc. Impacts 2013, 15, 63.
doi: 10.1039/C2EM30691C
Ling, L.; Zhang, W. X. Environ. Sci. Technol. 2017, 51, 2288.
doi: 10.1021/acs.est.6b04315
Li, S.; Wang, W.; Liang, F.; Zhang, W. X. J. Hazard. Mater. 2017, 322, Part A, 163.
Yan, W.; Ramos, M. A.; Koel, B. E.; Zhang, W. X. Chem. Commun. 2010, 46, 6995.
doi: 10.1039/c0cc02311f
O'Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Adv. Water Res. 2013, 51, 104.
doi: 10.1016/j.advwatres.2012.02.005
Klas, S.; Kirk, D. W. Sep. Purif. Technol. 2013, 116, 222.
doi: 10.1016/j.seppur.2013.05.044
Kanel, S. R.; Greneche, J. M.; Choi, H. Environ. Sci. Technol. 2006, 40, 2045.
doi: 10.1021/es0520924
Zhang, Y. Q.; Wang, J. F.; Amrhein, C.; Frankenberger, W. T. J. Environ. Qual. 2005, 34, 487.
doi: 10.2134/jeq2005.0487
Tang, C.; Huang, Y. H.; Zeng, H.; Zhang, Z. Water Res. 2014, 67, 166.
doi: 10.1016/j.watres.2014.09.016
Tang, C.; Huang, Y. H.; Zeng, H.; Zhang, Z. Chem. Eng. J. 2014, 244, 97.
doi: 10.1016/j.cej.2014.01.059
Yoon, I.-H.; Kim, K.-W.; Bang, S.; Kim, M. G. Appl. Catal. B:Environ. 2011, 104, 185.
doi: 10.1016/j.apcatb.2011.02.014
Liang, L.; Guan, X.; Huang, Y.; Ma, J.; Sun, X.; Qiao, J.; Zhou, G. Sep. Purif. Technol. 2015, 156, 1064.
doi: 10.1016/j.seppur.2015.09.062
Sarathy, V.; Tratnyek, P. G.; Nurmi, J. T.; Baer, D. R.; Amonette, J. E.; Chun, C. L.; Penn, R. L.; Reardon, E. J. J. Phys. Chem. C 2008, 112, 2286.
doi: 10.1021/jp0777418
Song, J.; Jia, S.-Y.; Yu, B.; Wu, S.-H.; Han, X. J. Hazard. Mater. 2015, 294, 70.
doi: 10.1016/j.jhazmat.2015.03.048
Lien, H.-L.; Wilkin, R. T. Chemosphere 2005, 59, 377.
doi: 10.1016/j.chemosphere.2004.10.055
Morin, G.; Wang, Y.; Ona-Nguema, G.; Juillot, F.; Calas, G.; Menguy, N.; Aubry, E.; Bargar, J. R.; Brown Jr, G. E. Langmuir 2009, 25, 9119.
doi: 10.1021/la900655v
Fendorf, S.; Eick, M. J.; Grossl, P.; Sparks, D. L. Environ. Sci. Technol. 1997, 31, 315.
doi: 10.1021/es950653t
Grossl, P. R.; Eick, M.; Sparks, D. L.; Goldberg, S.; Ainsworth, C. C. Environ. Sci. Technol. 1997, 31, 321.
doi: 10.1021/es950654l
Kanel, S. R.; Nepal, D.; Manning, B.; Choi, H. J. Nanopart. Res. 2007, 9, 725.
doi: 10.1007/s11051-007-9225-7
Jegadeesan, G.; Mondal, K.; Lalvani, S. B. Environ. Prog. 2005, 24, 289.
doi: 10.1002/(ISSN)1547-5921
Amstaetter, K.; Borch, T.; Larese-Casanova, P.; Kappler, A. Environ. Sci. Technol. 2009, 44, 102.
Hug, S. J.; Leupin, O. Environ. Sci. Technol. 2003, 37, 2734.
doi: 10.1021/es026208x
Tuček, J.; Prucek, R.; Kolařík, J.; Zoppellaro, G.; Petr, M.; Filip, J.; Sharma, V. K.; Zbořil, R. ACS Sustain. Chem. Eng. 2017, 5, 3027.
doi: 10.1021/acssuschemeng.6b02698
Dixit, S.; Hering, J. G. Environ. Sci. Technol. 2003, 37, 4182.
doi: 10.1021/es030309t
Jordan, N.; Foerstendorf, H.; Weiß, S.; Heim, K.; Schild, D.; Brendler, V. Geochim. Cosmochim. Acta 2011, 75, 1519.
doi: 10.1016/j.gca.2011.01.012
Myneni, S.; Tokunaga, T. K.; Brown, G. Science 1997, 278, 1106.
doi: 10.1126/science.278.5340.1106
Duc, M.; Lefevre, G.; Fedoroff, M.; Jeanjean, J.; Rouchaud, J.; Monteil-Rivera, F.; Dumonceau, J.; Milonjic, S. J. Environ. Radioact. 2003, 70, 61.
doi: 10.1016/S0265-931X(03)00125-5
Huang, L.; Yao, L.; He, Z.; Zhou, C.; Li, G.; Yang, B.; Deng, X. Chemosphere 2014, 100, 57.
doi: 10.1016/j.chemosphere.2013.12.074
Sun, Y. P.; Li, X. Q.; Cao, J.; Zhang, W. X.; Wang, H. P. Adv. Colloid Interface Sci. 2006, 120, 47.
doi: 10.1016/j.cis.2006.03.001
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Xiangli Wang , Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Reaction conditions: [nZⅥ]=0.5 g•L-1, [As(Ⅲ/Ⅴ)]0=[Se(Ⅳ/Ⅵ)]0=1.33 mmol•L-1, pHini=5.0, time=24 h, anoxic (DO < 0.5 mg•L-1), low oxygen (DO≈7 mg•L-1), high oxygen (DO > 14 mg•L-1).
Reaction conditions: [nZⅥ]=0.2~5.0 g•L-1, [As(Ⅲ/Ⅴ)]0=[Se(Ⅳ/Ⅵ)]0=1.33 mmol•L-1, pHini=5.0, time=24 h.
Reaction conditions: [nZⅥ]=0.5 g•L-1, [As(Ⅲ/Ⅴ)]0=[Se(Ⅳ/Ⅵ)]0=1.33 mmol•L-1, pHini=5.0.
Reaction conditions: [nZⅥ]=0.5 g•L-1, [As(Ⅲ/Ⅴ)]0=[Se(Ⅳ/Ⅵ)]0=1.33 mmol•L-1, time=24 h.
Reaction conditions: [nZⅥ]=0.5 g•L-1, [As(Ⅲ/Ⅴ)]0=[Se(Ⅳ/Ⅵ)]0=1.33 mmol•L-1, pHini=5.0, time=24 h.
Reaction conditions: [nZⅥ]=0.5 g•L-1, [As(Ⅲ/Ⅴ)]0=[Se(Ⅳ/Ⅵ)]0=1.33 mmol•L-1, pHini=5.0, time=24 h. Peaks are referred to magnetite/maghemite (M), geothite (G), element selenium Se(0) and Fe(0).
Reaction conditions: [nZⅥ]=0.5 g•L-1, [As(Ⅲ/Ⅴ)]0=[Se(Ⅳ/Ⅵ)]0=1.33 mmol•L-1, pHini=5.0