Citation: Xia Xuefen, Hua Yilong, Huang Xiaoyue, Ling Lan, Zhang Weixian. Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZⅥ)[J]. Acta Chimica Sinica, ;2017, 75(6): 594-601. doi: 10.6023/A17030099 shu

Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZⅥ)

  • Corresponding author: Ling Lan, linglan@tongji.edu.cn Zhang Weixian, zhangwx@tongji.edu.cn
  • Received Date: 13 March 2017

    Fund Project: the National Natural Science Foundation of China 21677107the National Natural Science Foundation of China 51578398the National Natural Science Foundation of China 21307094

Figures(9)

  • Arsenic (As(Ⅲ/Ⅴ)) and selenium (Se(Ⅳ/Ⅵ)) are toxic inorganic contaminants in groundwater and industrial wastewater. The pollution caused by As and Se has become an environmental concern throughout the world. A variety of treatment technologies have been applied for As and Se removal from aqueous solutions. Among them, nanoscale zero-valent iron (nZⅥ) has been found to have a remarkable capability to remove As and Se from waters. Although lots of studies on the process of As and Se removal with nZⅥ are published, a systematic comparative study is still limited. In this study, the removal capacities of As(Ⅲ), As(Ⅴ), Se(Ⅳ) and Se(Ⅵ) with nZⅥ in a single-specie system were compared. The performances of nZⅥ for As(Ⅲ), As(Ⅴ), Se(Ⅳ) and Se(Ⅵ) were investigated on different conditions (including dissolved oxygen, nZⅥ dosage, contact time, and initial solution pH). The morphology and structure of fresh and spent nZⅥ were also examined by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) intergrated with energy-dispersive X-ray spectrometry (XEDS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The batch experiments were conducted at room temperature in the 50-mL glass vials sealed with screwcaps. According to the speciation diagram, H3AsO30 and H2AsO4- are the respective predominant dissolved As(Ⅲ) and As(Ⅴ) species respectively at pH 5.0; while HSeO3- and SeO42- are the predominant dissolved Se(Ⅳ) and Se(Ⅵ) species respectively at pH 5.0. The results showed that the removal capacities of As and Se investigated generally followed the order of Se(Ⅳ)> As(Ⅲ)> Se(Ⅵ)> As(Ⅴ). Dissolved oxygen (DO) was found no apparent effects on the removal of As(Ⅲ) and Se(Ⅳ), while the removal performance of As(Ⅴ) and Se(Ⅵ) was inhibited at high dissolved oxygen level (>14 mg/L). The removal of As and Se were enhanced with increasing nZⅥ dosage. Initial solution pH had no significant effect on Se(Ⅳ) removal, whereas the removal of As(Ⅲ), As(Ⅴ), and Se(Ⅵ) appeared to be strongly dependent on the initial solution pH. The spent nZⅥ were different due to the different mechanisms of As(Ⅲ/Ⅴ) and Se(Ⅳ/Ⅵ) reactions with nZⅥ. The results will be useful for the application of nZⅥ to the treatment of As/Se-containing wastewater.
  • 加载中
    1. [1]

      Mirza, A.; Ramachandran, V. Removal of Arsenic and Selenium from Wastewaters——A Review, Minerals, Metals & Materials Society, Warrendale, PA, United States, 1996.

    2. [2]

      Cui, G.; Fu, Y.; Luo, J.; Liu, P.; Ding, A. Acta Chim. Sinica 2012, 70, 1059.
       

    3. [3]

      Torres, J.; Pintos, V.; Gonzatto, L.; Domínguez, S.; Kremer, C.; Kremer, E. Chem. Geol. 2011, 288, 32.
       

    4. [4]

      Missana, T.; Alonso, U.; Scheinost, A.; Granizo, N.; García-Gutiérrez, M. Geochim. Cosmochim. Acta 2009, 73, 6205.  doi: 10.1016/j.gca.2009.07.005

    5. [5]

      Winkel, L. H. E.; Johnson, C. A.; Lenz, M.; Grundl, T.; Leupin, O. X.; Amini, M.; Charlet, L. Environ. Sci. Technol. 2012, 46, 571.  doi: 10.1021/es203434d

    6. [6]

      Korte, N. E.; Fernando, Q. Crit. Rev. Environ. Control 1991, 21, 1.  doi: 10.1080/10643389109388408

    7. [7]

      Hamilton, S. J. Sci. Total Environ. 2004, 326, 1.  doi: 10.1016/j.scitotenv.2004.01.019

    8. [8]

      Cui, G.; Guo, Y.; Liu, P. Acta Chim. Sinica 2012, 70, 2525.  doi: 10.3866/PKU.WHXB201208222
       

    9. [9]

      Yamani, J. S.; Lounsbury, A. W.; Zimmerman, J. B. Water Res. 2016, 88, 889.  doi: 10.1016/j.watres.2015.11.017

    10. [10]

      Mohan, D.; Pittman, C. U. J. Hazard. Mater. 2007, 142, 1.  doi: 10.1016/j.jhazmat.2007.01.006

    11. [11]

      Olegario, J. T.; Yee, N.; Miller, M.; Sczepaniak, J.; Manning, B. J. Nanopart. Res. 2010, 12, 2057.  doi: 10.1007/s11051-009-9764-1

    12. [12]

      Ramos, M. A.; Yan, W.; Li, X. Q.; Koel, B. E.; Zhang, W. X. J. Phys. Chem. C 2009, 113, 14591.

    13. [13]

      Kanel, S. R.; Manning, B.; Charlet, L.; Choi, H. Environ. Sci. Technol. 2005, 39, 1291.  doi: 10.1021/es048991u

    14. [14]

      Ling, L.; Pan, B.; Zhang, W. X. Water Res. 2015, 71, 274.  doi: 10.1016/j.watres.2015.01.002

    15. [15]

      Yan, W.; Ramos, M. A. V.; Koel, B. E.; Zhang, W. X. J. Phys. Chem. C 2012, 116, 5303.  doi: 10.1021/jp208600n

    16. [16]

      Kanel, S. R.; Greneche, J. M.; Choi, H. Environ. Sci. Technol. 2006, 40, 2045.  doi: 10.1021/es0520924

    17. [17]

      Xia, X.; Ling, L.; Zhang, W. X. Environ. Sci.:Nano 2017, 4, 52.  doi: 10.1039/C6EN00231E

    18. [18]

      Xia, X.; Ling, L.; Zhang, W. X. Chemosphere 2017, 168, 1597.  doi: 10.1016/j.chemosphere.2016.11.150

    19. [19]

      Ling, L.; Zhang, W. X. Environ. Sci. Technol. Lett. 2014, 1, 305.  doi: 10.1021/ez5001512

    20. [20]

      Yan, W.; Vasic, R.; Frenkel, A. I.; Koel, B. E. Environ. Sci. Technol. 2012, 46, 7018.  doi: 10.1021/es2039695

    21. [21]

      Yan, W.; Lien, H.-L.; Koel, B. E.; Zhang, W. X. Environ. Sci.:Proc. Impacts 2013, 15, 63.  doi: 10.1039/C2EM30691C

    22. [22]

      Ling, L.; Zhang, W. X. Environ. Sci. Technol. 2017, 51, 2288.  doi: 10.1021/acs.est.6b04315

    23. [23]

      Li, S.; Wang, W.; Liang, F.; Zhang, W. X. J. Hazard. Mater. 2017, 322, Part A, 163.
       

    24. [24]

      Yan, W.; Ramos, M. A.; Koel, B. E.; Zhang, W. X. Chem. Commun. 2010, 46, 6995.  doi: 10.1039/c0cc02311f

    25. [25]

      O'Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Adv. Water Res. 2013, 51, 104.  doi: 10.1016/j.advwatres.2012.02.005

    26. [26]

      Klas, S.; Kirk, D. W. Sep. Purif. Technol. 2013, 116, 222.  doi: 10.1016/j.seppur.2013.05.044

    27. [27]

      Kanel, S. R.; Greneche, J. M.; Choi, H. Environ. Sci. Technol. 2006, 40, 2045.  doi: 10.1021/es0520924

    28. [28]

      Zhang, Y. Q.; Wang, J. F.; Amrhein, C.; Frankenberger, W. T. J. Environ. Qual. 2005, 34, 487.  doi: 10.2134/jeq2005.0487

    29. [29]

      Tang, C.; Huang, Y. H.; Zeng, H.; Zhang, Z. Water Res. 2014, 67, 166.  doi: 10.1016/j.watres.2014.09.016

    30. [30]

      Tang, C.; Huang, Y. H.; Zeng, H.; Zhang, Z. Chem. Eng. J. 2014, 244, 97.  doi: 10.1016/j.cej.2014.01.059

    31. [31]

      Yoon, I.-H.; Kim, K.-W.; Bang, S.; Kim, M. G. Appl. Catal. B:Environ. 2011, 104, 185.  doi: 10.1016/j.apcatb.2011.02.014

    32. [32]

      Liang, L.; Guan, X.; Huang, Y.; Ma, J.; Sun, X.; Qiao, J.; Zhou, G. Sep. Purif. Technol. 2015, 156, 1064.  doi: 10.1016/j.seppur.2015.09.062

    33. [33]

      Sarathy, V.; Tratnyek, P. G.; Nurmi, J. T.; Baer, D. R.; Amonette, J. E.; Chun, C. L.; Penn, R. L.; Reardon, E. J. J. Phys. Chem. C 2008, 112, 2286.  doi: 10.1021/jp0777418

    34. [34]

      Song, J.; Jia, S.-Y.; Yu, B.; Wu, S.-H.; Han, X. J. Hazard. Mater. 2015, 294, 70.  doi: 10.1016/j.jhazmat.2015.03.048

    35. [35]

      Lien, H.-L.; Wilkin, R. T. Chemosphere 2005, 59, 377.  doi: 10.1016/j.chemosphere.2004.10.055

    36. [36]

      Morin, G.; Wang, Y.; Ona-Nguema, G.; Juillot, F.; Calas, G.; Menguy, N.; Aubry, E.; Bargar, J. R.; Brown Jr, G. E. Langmuir 2009, 25, 9119.  doi: 10.1021/la900655v

    37. [37]

      Fendorf, S.; Eick, M. J.; Grossl, P.; Sparks, D. L. Environ. Sci. Technol. 1997, 31, 315.  doi: 10.1021/es950653t

    38. [38]

      Grossl, P. R.; Eick, M.; Sparks, D. L.; Goldberg, S.; Ainsworth, C. C. Environ. Sci. Technol. 1997, 31, 321.  doi: 10.1021/es950654l

    39. [39]

      Kanel, S. R.; Nepal, D.; Manning, B.; Choi, H. J. Nanopart. Res. 2007, 9, 725.  doi: 10.1007/s11051-007-9225-7

    40. [40]

      Jegadeesan, G.; Mondal, K.; Lalvani, S. B. Environ. Prog. 2005, 24, 289.  doi: 10.1002/(ISSN)1547-5921

    41. [41]

      Amstaetter, K.; Borch, T.; Larese-Casanova, P.; Kappler, A. Environ. Sci. Technol. 2009, 44, 102.
       

    42. [42]

      Hug, S. J.; Leupin, O. Environ. Sci. Technol. 2003, 37, 2734.  doi: 10.1021/es026208x

    43. [43]

      Tuček, J.; Prucek, R.; Kolařík, J.; Zoppellaro, G.; Petr, M.; Filip, J.; Sharma, V. K.; Zbořil, R. ACS Sustain. Chem. Eng. 2017, 5, 3027.  doi: 10.1021/acssuschemeng.6b02698

    44. [44]

      Dixit, S.; Hering, J. G. Environ. Sci. Technol. 2003, 37, 4182.  doi: 10.1021/es030309t

    45. [45]

      Jordan, N.; Foerstendorf, H.; Weiß, S.; Heim, K.; Schild, D.; Brendler, V. Geochim. Cosmochim. Acta 2011, 75, 1519.  doi: 10.1016/j.gca.2011.01.012

    46. [46]

      Myneni, S.; Tokunaga, T. K.; Brown, G. Science 1997, 278, 1106.  doi: 10.1126/science.278.5340.1106

    47. [47]

      Duc, M.; Lefevre, G.; Fedoroff, M.; Jeanjean, J.; Rouchaud, J.; Monteil-Rivera, F.; Dumonceau, J.; Milonjic, S. J. Environ. Radioact. 2003, 70, 61.  doi: 10.1016/S0265-931X(03)00125-5

    48. [48]

      Huang, L.; Yao, L.; He, Z.; Zhou, C.; Li, G.; Yang, B.; Deng, X. Chemosphere 2014, 100, 57.  doi: 10.1016/j.chemosphere.2013.12.074

    49. [49]

      Sun, Y. P.; Li, X. Q.; Cao, J.; Zhang, W. X.; Wang, H. P. Adv. Colloid Interface Sci. 2006, 120, 47.  doi: 10.1016/j.cis.2006.03.001

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    3. [3]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Zhiliang Li . An Overview of Research on the History of Catalysis Science in China. University Chemistry, 2024, 39(7): 398-404. doi: 10.3866/PKU.DXHX202310101

    13. [13]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    16. [16]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    17. [17]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    18. [18]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    19. [19]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    20. [20]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

Metrics
  • PDF Downloads(12)
  • Abstract views(1957)
  • HTML views(346)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return