Citation: Cheng Pengfei, Wang Ying, Cheng Kuan, Li Fangbai, Qin Haoli, Liu Tongxu. The Acid-Base Buffer Capacity of Red Soil Variable Charge Minerals and Its Surface Complexation Model[J]. Acta Chimica Sinica, ;2017, 75(6): 637-644. doi: 10.6023/A17020056 shu

The Acid-Base Buffer Capacity of Red Soil Variable Charge Minerals and Its Surface Complexation Model

  • Corresponding author: Liu Tongxu, txliu@soil.gd.cn
  • Received Date: 15 February 2017

    Fund Project: the "973" Program 2014CB441002the National Natural Science Foundation of China 41571130052

Figures(8)

  • Iron oxides and kaolinite are the main sources of variable charges in the red soil. As a result of being protonated and deprotonated under different acid-base conditions, the surface hydroxyl groups can buffer the pH changes of red soil. In this study, iron oxide and kaolinite were titrated by the standard HCl and NaOH solution through the auto potentiometric titration under the controlled pH=2.9~9.5, to study the surface charge of soil minerals. The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and N2 desorption/adsorption isotherms (BET) were used to characterize the crystal structures, surface groups and specific surface areas of soil minerals. Based on the characterization data and titration curves, the acid-base properties of the minerals were analyzed by using 1-site/2-pK surface complexation model. The Gran plot method, commonly used to determine the equivalence points, was applied to calculate the concentration (Hs) and density (Ds) of the surface active sites on the soil minerals. The acid-base equilibrium constants (pKaint) of soil minerals were obtained by extrapolation and the corresponding pHpzc were calculated by the following formula:pHpzc=1/2 (pKa1int+pKa2int). The result of calculated value of pHpzc was nearly equal with the experimental value, which showed that it is feasible to apply this model calculation method on the soil minerals. In addition, the above parameters can explain the acid-base buffer capacity of the minerals quantitatively. The results show that goethite and kaolinite have the higher surface active site concentration. According to the parameters, the surface chemical speciation of minerals at different pH were calculated by Visual Minteq software with the double layer model (DLM) to explain the mechanism of acid-base buffer behavior on the mineral surfaces. Finally, the acid-base titration method and model calculation approach were also used to analyze the acid-base buffer capacity of the natural red soil samples. The feasibility of this method on the red soil was further verified. Then, the surface chemical species (≡SOH2+, ≡SO- and ≡SOH) of the red soil were calculated by surface complex model to further explain their acid-base buffer mechanism.
  • 加载中
    1. [1]

      Li, Q. K. Chinese Red Soil, Vol. 1~2, Eds.:Zhao, Q. G.; Shi, H.; Gong, Z. T., Science Press, Beijing, 1983, p. 1(in Chinese).

    2. [2]

      Xiong, Y.; Li, Q. K. Chinese Soil, Science Press, Beijing, 1990, pp. 502~508(in Chinese).

    3. [3]

      Brown, K. A. Water, Air, Soil Pollut. 1987, 32, 201.
       

    4. [4]

      Liao, B.; Guo, Z.; Zeng, Q.; Probst, A.; Probst, J. Water, Air, Soil Pollut.:Focus 2007, 7, 151.  doi: 10.1007/s11267-006-9077-7

    5. [5]

      Fu, L.; Wu, J.; Yang, Y.; Qiu, L. Environ. Sci. 1993, 14(1), 20(in Chinese).
       

    6. [6]

      Zhao, Y.; Duan, L.; Xing, J.; Larssen, T.; Nielsen, C. P.; Hao, J. Environ. Sci. Technol. 2009, 43, 8021.  doi: 10.1021/es901430n

    7. [7]

      Guo, J. H.; Liu, X. J.; Zhang, Y.; Shen, J. L.; Han, W. X.; Zhang, W. F.; Christie, P.; Goulding, K. W. T.; Vitousek, P. M.; Zhang, F. S. Science 2010, 327, 1008.  doi: 10.1126/science.1182570

    8. [8]

      Liao, B. H.; Dai, Z. H. Acta Sci. Circumstantiae 1991, 11, 425(in Chinese).
       

    9. [9]

      Reuss, J.; Cosby, B.; Wright, R. Nature 1987, 329, 27.  doi: 10.1038/329027a0

    10. [10]

      Wright, R.; Cosby, B.; Flaten, M.; Reuss, J. Nature 1990, 343, 53.  doi: 10.1038/343053a0

    11. [11]

      Larssen, T.; Schnoor, J. L.; Seip, H. M.; Dawei, Z. Sci. Total Environ. 2000, 246, 175.  doi: 10.1016/S0048-9697(99)00457-X

    12. [12]

      Li, J. Y.; Wang, N.; Xu, R. K. Soils 2009, 41, 932(in Chinese).  doi: 10.3321/j.issn:0253-9829.2009.06.015

    13. [13]

      Xu, R. K. Soils 2015, 47, 238(in Chinese).
       

    14. [14]

      Alekseeva, T.; Alekseev, A.; Xu, R. K.; Zhao, A. Z.; Kalinin, P. Environ. Geochem. Health 2011, 33, 137.  doi: 10.1007/s10653-010-9327-5

    15. [15]

      Dixon, J. B.; Weed, S. B.; Dinauer, R. C. Minerals in Soil Environments, 2nd ed., Eds.:Barnhisel, R. I.; Bertsch, P. M., SSSA, USA, 1989, Chapter 15, p. 729.

    16. [16]

      Yu, T. R.; Chen, Z. C. The Chemical Process in the Soil, Vol. 14, Ed.:Chen, Z. C., Science Press, Beijing, 1990, p. 432(in Chinese).

    17. [17]

      Yu, T. R.; Wang, Z. Q. Soil Analytical Chemistry, Vol. 11, Eds.:Chen, J. F.; He, Q., Science Press, Beijing, 1987, p. 337(in Chinese).

    18. [18]

      Wang, X. G.; Li, F. B. Persistent Organic Pollutants Forum and National Symposium on Persistent Organic Pollutants, Eds.:Yu, G.; Huang, J.; Wang, B.; Liu, Y. C., Chinese Chemical Society, Beijing, 2006, pp. 215~223(in Chinese).

    19. [19]

      Wang, X. G.; Sun, L. R.; Zeng, F.; Li, F. B. Res. Environ. Sci. 2009, 22(4), 60(in Chinese).
       

    20. [20]

      Gao, S.; He, G. P.; Wu, H. H.; Sun, W. Y. Acta Petrol. Mineral. 2005, 24, 239(in Chinese).  doi: 10.3969/j.issn.1000-6524.2005.03.010

    21. [21]

      Gao, Y.; Mucci, A. Geochim. Cosmochim. Acta 2001, 65, 2361.  doi: 10.1016/S0016-7037(01)00589-0

    22. [22]

      Tan, W. F; Zhou, S. Z.; Liu, F.; Feng, X. H.; Li, X. H. Soils 2007, 39(5), 726(in Chinese).
       

    23. [23]

      Xu, R. K.; Zhao, A. Z.; Jiang, J. Ecol. Environ. 2011, 20(10), 1395 (in Chinese).  doi: 10.3969/j.issn.1674-5906.2011.10.002

    24. [24]

      Yu, X. J.; Chou, R. L. Chongqing Environ. Sci. 1998, 20(3), 11(in Chinese).
       

    25. [25]

      Stumm, W. Chemistry of the Solid-water Interface:Processes at the Mineral-water and Particle-water Interface in Natural Systems, John Wiley & Son Inc., New York, 1992. pp. 13~23.

    26. [26]

      Tombácz, E.; Szekeres, M. Langmuir 2001, 17, 1411.  doi: 10.1021/la001322j

    27. [27]

      Davis, J. A.; Leckie, J. O. J. Colloid Interface Sci. 1978, 67, 90.  doi: 10.1016/0021-9797(78)90217-5

    28. [28]

      Cagnasso, M.; Boero, V.; Franchini, M. A.; Chorover, J. Colloids Surf., B 2010, 76, 456.  doi: 10.1016/j.colsurfb.2009.12.005

    29. [29]

      Liu, T.; Li, X.; Li, F.; Zhang, W.; Chen, M.; Zhou, S. Colloids Surf., A 2011, 379(1), 143.
       

    30. [30]

      Li, X.; Liu, T.; Li, F.; Zhang, W.; Zhou, S.; Li, Y. J. Soil. Sediment. 2012, 12(2), 217.  doi: 10.1007/s11368-011-0433-5

    31. [31]

      Zhou, D. H.; Li, X. H.; Xu, F. L. J. Huazhong Agric. Univ. 1996, 15(2), 153(in Chinese).
       

    32. [32]

      Liu, T.; Li, X.; Li, F.; Tao, L.; Liu, H. Soil Sci. 2014, 179, 468.  doi: 10.1097/SS.0000000000000092

    33. [33]

      Djomgoue, P.; Njopwouo, D. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 275.
       

    34. [34]

      Saikia, B. J.; Parthasarathy, G. J. Mod. Phys. 2010, 1, 206.  doi: 10.4236/jmp.2010.14031

    35. [35]

      Lu, S. J.; Tan, W. F.; Liu, F.; Feng, X. H. Acta Pedol. Sin. 2006, 43(5), 756(in Chinese).
       

    36. [36]

      Szekeres, M.; Tombácz, E. Colloids Surf., A 2012, 414, 302.  doi: 10.1016/j.colsurfa.2012.08.027

    37. [37]

      Jolsterå, R.; Gunneriusson, L.; Forsling, W. J. Colloid Interface Sci. 2010, 342, 493.  doi: 10.1016/j.jcis.2009.10.080

    38. [38]

      Frini-Srasra, N.; Kriaa, A.; Srasra, E. Russ. J. Electrochem. 2007, 43, 795.  doi: 10.1134/S1023193507070099

    39. [39]

      Wu, Z. S.; Zhang, W. M.; Sun, Z. X. Acta Chim. Sinica 2010, 68(8), 769(in Chinese).
       

    40. [40]

      Davis, J. A.; Kent, D. Rev. Mineral. Geochem. 1990, 23, 177.
       

    41. [41]

      Kubicki, J. D.; Paul, K. W.; Kabalan, L.; Zhu, Q.; Mrozik, M. K.; Aryanpour, M.; Pierre-Louis, A. M.; Strongin, D. R. Langmuir 2012, 8, 14573.
       

    42. [42]

      Cornell, R. M.; Schwertmann, U. The Iron Oxides:Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, 2003, pp. 221~223.

    43. [43]

      Pagnanelli, F.; Bornoroni, L.; Toro, L. Environ. Sci. Technol. 2004, 38, 5443.  doi: 10.1021/es049760q

    44. [44]

      Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2014, 48, 14564.  doi: 10.1021/es503777a

    45. [45]

      Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2013, 47(13), 7350.  doi: 10.1021/es400362w

    46. [46]

      Liu, T.; Li, X.; Waite, T. D. Environ. Sci. Technol. 2013, 47(23), 13712.  doi: 10.1021/es403709v

    47. [47]

      Liu, T.; Li, X.; Zhang, W.; Hu, M.; Li, F. J. Colloid Interface Sci. 2014, 423, 25.  doi: 10.1016/j.jcis.2014.02.026

    48. [48]

      Yanina, S. V.; Rosso, K. M. Science 2008, 320(5873), 218.  doi: 10.1126/science.1154833

    49. [49]

      Janusz, W.; Skwarek, E.; Zarko, V. I.; Gun'ko, V. M. Physicochem. Probl. Miner. Process. 2007, 41, 215.
       

    50. [50]

      Pyman, M.; Bowden, J.; Posner, A. Soil Res. 1979, 17, 191.  doi: 10.1071/SR9790191

    51. [51]

      Yu, T. R.; Ji, G. L.; Ding, C. P. Electrochemical Behavior of Variable Charge Soils, Vol. 2, Eds.:Yu, T. R.; Zhao, A. Z., Science Press, Beijing, 1996, p. 9(in Chinese).

  • 加载中
    1. [1]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    2. [2]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    3. [3]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    4. [4]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    5. [5]

      Dapeng Liu Fang Wang Jingbin Zeng . Exploration on College Chemistry Teaching Focused on Cultivation of Scientific Research Ability. University Chemistry, 2024, 39(8): 126-131. doi: 10.3866/PKU.DXHX202401034

    6. [6]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    7. [7]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Wei Tan Feng Shi . Cultivation of Scientific Research Innovation Abilities in Chemistry Graduate Students at Local Universities. University Chemistry, 2024, 39(6): 23-28. doi: 10.3866/PKU.DXHX202311098

    10. [10]

      Weizhou Jiao Zhiwei Liu Chao Zhang Zhiguo Yuan Guisheng Qi Jing Gao . Construction and Implementation of a Mode of Chemical Talent Training Driven by Practice and Innovation Ability. University Chemistry, 2024, 39(7): 76-81. doi: 10.12461/PKU.DXHX202405011

    11. [11]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    12. [12]

      Juan Hou Chen Zhou Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023

    13. [13]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    14. [14]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    15. [15]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    16. [16]

      Duo Yang Xiangchun Li Wenyong Lai . Reform and Practice of a Diversified Teaching Model for Inorganic Chemistry Laboratory Focused on Innovation Ability Cultivation. University Chemistry, 2025, 40(4): 208-214. doi: 10.12461/PKU.DXHX202406006

    17. [17]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    18. [18]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    19. [19]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    20. [20]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

Metrics
  • PDF Downloads(11)
  • Abstract views(3045)
  • HTML views(1143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return