Citation: Tang Jing, Tang Lin, Feng Haopeng, Dong Haoran, Zhang Yi, Liu Sishi, Zeng Guangming. Research Progress of Aqueous Pollutants Removal by Sulfidated Nanoscale Zero-valent Iron[J]. Acta Chimica Sinica, ;2017, 75(6): 575-582. doi: 10.6023/A17020045 shu

Research Progress of Aqueous Pollutants Removal by Sulfidated Nanoscale Zero-valent Iron

  • Corresponding author: Tang Lin, tanglin@hnu.edu.cn Zeng Guangming, zgming@hnu.edu.cn
  • Received Date: 8 February 2017

    Fund Project: the National Natural Science Foundation of China 51579096the National Program for Support of Top-Notch Young Professionals of China 2012the National Natural Science Foundation of China 51521006the National Natural Science Foundation of China 51222805the National Natural Science Foundation of China 51508175

Figures(5)

  • Nanoscale zero-valent iron (NZVI), an environmental remediation agent derived from wide range of raw materials, has been extensively applied in the field of remedying polluted water environment such as groundwater and wastewater. Although NZVI possesses some advantages such as excellent reaction activity, low cost and low toxicity, the limitation of in-situ remediation and storage concerning this kind of material has not been completely overcome yet. Among methods to improve the practical application of NZVI in water environment, sulfidation has become a research hotspot over recent decade. This means that the focus of modifying NZVI has shifted from reaction activity to electron selectivity. Most of the preparation methods of sulfidated NZVI belong to the chemical approach. These sulfidated materials have been heavily used to degrade organic pollutants and remove heavy metals in water to test their practical reactivity. Reaction mechanisms of pollutants and sulfidated NZVI in different environmental systems have also been extensively investigated. Hereinto, according to the species of organic pollutants and the reaction conditions, these reaction mechanisms can be roughly divided into three categories, including adsorption, reduction, and oxidation. In recent years, it is noted that sulfidated NZVI has made great progress to enhance the reaction activity and electrons selectivity, though it still has some limitations in the practical application. It is necessary to thoroughly review recent research progress about the reaction activities of sulfidated NZVI and its reaction mechanisms with pollutants in water, because it can clearly figure out new directions towards future development of sulfidated NZVI application. Due to the superior properties of sulfidated zero-valent iron, this material and relevant iron sulfide-based materials are going to belong to the most important functional materials in the field of environmental remediation with promising development prospect.
  • 加载中
    1. [1]

      Zhang, Y.; Zeng, G.; Tang, L.; Huang, D.; Jiang, X.; Chen, Y. Biosens. Bioelectron. 2007, 22, 2121.  doi: 10.1016/j.bios.2006.09.030

    2. [2]

      Tang, L.; Zeng, G.; Shen, G.; Li, Y.; Zhang, Y.; Huang, D. Environ. Sci. Technol. 2008, 42, 1207.  doi: 10.1021/es7024593

    3. [3]

      Tang, L.; Fang, Y.; Pang, Y.; Zeng, G.; Wang, J.; Zhou, Y.; Deng, Y.; Yang, G.; Cai, Y.; Chen, J. Chem. Eng. J. 2014, 254, 302.  doi: 10.1016/j.cej.2014.05.119

    4. [4]

      Tang, L.; Yang, G.; Zeng, G.; Ca, Y.; Li, S.; Zhou, Y.; Pang, Y.; Liu, Y.; Zhang, Y.; Luna, B. Chem. Eng. J. 2014, 239, 114.  doi: 10.1016/j.cej.2013.10.104

    5. [5]

      Li, J.; Qin, H.; Zhang, X.; Guan, X. Acta Chim. Sinica 2017, DOI:10.6023/A17010007.  doi: 10.6023/A17010007
       

    6. [6]

      Chen, H.; Huang, S.; Zhang, Z.; Liu, Y.; Wang, X. Acta Chim. Sinica 2017, DOI:10.6023/A17010039.  doi: 10.6023/A17010039
       

    7. [7]

      Zhou, Q.; Li, J.; Wang, M.; Zhao, D. Crit. Rev. Env. Sci. Tec. 2016, 46, 783.  doi: 10.1080/10643389.2016.1160815

    8. [8]

      Liang, Z.; Wang, Y. Environ. Prot. 2002, 4, 15.  doi: 10.3969/j.issn.1004-6216.2002.02.006

    9. [9]

      Jiemvarangkul, P.; Zhang, W.; Lien, H. L. Chem. Eng. J. 2011, 170, 482.  doi: 10.1016/j.cej.2011.02.065

    10. [10]

      Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R. D.; Lowry, G. V. Environ. Sci. Technol. 2007, 41, 284.  doi: 10.1021/es061349a

    11. [11]

      Shi, L.; Zhang, X.; Chen, Z. Water Res. 2011, 45, 886.  doi: 10.1016/j.watres.2010.09.025

    12. [12]

      Greenlee, L. F.; Torrey, J. D.; Amaro, R. L.; Shaw, J. M. Environ. Sci. Technol. 2012, 46, 12913.  doi: 10.1021/es303037k

    13. [13]

      Fan, D.; O'Brien Johnson, G.; Tratnyek, P. G.; Johnson, R. L. Environ. Sci. Technol. 2016, 50, 9558.  doi: 10.1021/acs.est.6b02170

    14. [14]

      Fan, D.; O'Carroll, D. M.; Elliott, D. W.; Xiong, Z.; Tratnyek, P. G.; Johnson, R. L.; Garcia, A. N. Remediat. J. 2016, 26, 27.

    15. [15]

      Ma, X.; Gurung, A.; Deng, Y. Sci. Total Environ. 2013, 443, 844.  doi: 10.1016/j.scitotenv.2012.11.073

    16. [16]

      El-Temsah, Y. S.; Joner, E. J. Chemosphere 2012, 89, 76.  doi: 10.1016/j.chemosphere.2012.04.020

    17. [17]

      He, F.; Zhao, D.; Liu, J.; Roberts, C. B. Ind. Eng. Chem. Res. 2007, 46, 29.  doi: 10.1021/ie0610896

    18. [18]

      Liu, Z.; Zhang, F.; Hoekman, S. K.; Liu, T.; Gai, C.; Peng, N. ACS Sustain. Chem. Eng. 2016, 4, 3261.  doi: 10.1021/acssuschemeng.6b00306

    19. [19]

      Shi, L. N.; Zhang, X.; Chen, Z. L. Water Res. 2011, 45, 886.  doi: 10.1016/j.watres.2010.09.025

    20. [20]

      Chen, Z.; Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. J. Colloid Interface Sci. 2013, 398, 59.  doi: 10.1016/j.jcis.2013.02.020

    21. [21]

      Wu, Y.; Yang, M.; Hu, S.; Wang, L.; Yao, H. Toxicol. Environ. Chem. 2014, 96, 227.  doi: 10.1080/02772248.2014.931960

    22. [22]

      Krasae, N.; Wantala, K.; Tantriratna, P.; Grisdanurak, N. App. Env. Res. 2014, 36, 15.

    23. [23]

      Ryu, A.; Jeong, S. W.; Jang, A.; Choi, H. Appl. Catal. B-Environ. 2011, 105, 128.  doi: 10.1016/j.apcatb.2011.04.002

    24. [24]

      Xie, Y.; Fang, Z.; Cheng, W.; Tsang, P. E.; Zhao, D. Sci. Total Environ. 2014, 485, 363.
       

    25. [25]

      Shih, Y. H.; Chen, M. Y.; Su, Y. F. Appl. Catal. B-Environ. 2011 105, 24.  doi: 10.1016/j.apcatb.2011.03.024

    26. [26]

      Kim, E. J.; Kim, J. H.; Azad, A. M.; Chang, Y. S. ACS Appl. Mater. Interfaces 2011, 3, 1457.  doi: 10.1021/am200016v

    27. [27]

      Park, S. W.; Kim, S. K.; Kim, J. B.; Choi, S. W.; Inyang, H. I.; Tokunaga, S. Water Air Soil Pollut:Focus. 2006, 6, 97.  doi: 10.1007/s11267-005-9016-z

    28. [28]

      He, F. In Iron Environmental Chemistry and Pollution Control Technology Seminar, Shanghai, 2016, p. 41.

    29. [29]

      Yanlai, H.; Weile, Y. Environ. Sci. Technol. 2016, 50, 12992.  doi: 10.1021/acs.est.6b03997

    30. [30]

      Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed., Elsevier Butterworth Heinemann, 1997.

    31. [31]

      Kappes, M.; Frankel, G. S.; Sridhar, N.; Carranza, R. M. J. Electrochem. Soc. 2012, 159, C195.  doi: 10.1149/2.085204jes

    32. [32]

      Macdonald, D. D.; Roberts, B.; Hyne, J. B. Corros. Sci. 1978, 18, 411.  doi: 10.1016/S0010-938X(78)80037-7

    33. [33]

      Schmitt, G. Corrosion 1991, 47, 285.  doi: 10.5006/1.3585257

    34. [34]

      Rajajayavel, S. R. C.; Ghoshal, S. Water Res. 2015, 78, 144.  doi: 10.1016/j.watres.2015.04.009

    35. [35]

      Fan, D.; Anitori, R. P.; Tebo, B. M.; Tratnyek, P. G. Environ. Sci. Technol. 2013, 47, 5302.  doi: 10.1021/es304829z

    36. [36]

      Tang, J.; Tang, L.; Feng, H.; Zeng, G.; Dong, H.; Zhang, C.; Huang, B.; Deng Y.; Wang, J.; Zhou, Y. J. Hazard. Mater. 2016, 320, 581.  doi: 10.1016/j.jhazmat.2016.07.042

    37. [37]

      Butler, E. C.; Hayes, K. F. Environ. Sci. Technol. 2001, 35, 3884.  doi: 10.1021/es010620f

    38. [38]

      Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environ. Sci. Technol. 2016, 50, 7290.  doi: 10.1021/acs.est.6b01897

    39. [39]

      Su, Y.; Adeleye, A. S.; Keller, A. A.; Huang, Y.; Dai, C.; Zhou, X.; Zhang, Y. Water Res. 2015, 74, 47.  doi: 10.1016/j.watres.2015.02.004

    40. [40]

      Xu, C.; Zhang, B.; Wang, Y.; Shao, Q.; Zhou, W.; Fan, D.; Bandstra, J. Z.; Shi, Z.; Tratnyek, P. G. Environ. Sci. Technol. 2016, 50, 11879.  doi: 10.1021/acs.est.6b03184

    41. [41]

      Li, D.; Mao, Z.; Zhong, Y.; Huang, W.; Wu, Y.; Peng, P. Water Res. 2016, 103, 1.  doi: 10.1016/j.watres.2016.07.003

    42. [42]

      Du, J.; Bao, J.; Lu, C.; Werner, D. Water Res. 2016, 102, 73.  doi: 10.1016/j.watres.2016.06.009

    43. [43]

      Fan, D.; Anitori, R. P.; Tebo, B. M.; Tratnyek, P. G. Environ. Sci. Technol. 2014, 48, 7409.  doi: 10.1021/es501607s

    44. [44]

      Tang, L.; Tang, J.; Zeng, G.; Yang, G.; Xie, X.; Zhou, Y.; Pang, Y.; Fang, Y.; Wang, J.; Xiong, W. Appl. Surf. Sci. 2015, 333, 220.  doi: 10.1016/j.apsusc.2015.02.025

    45. [45]

      Ling, X.; Li, J.; Zhu, W.; Zhu, Y.; Sun, X.; Shen, J.; Han, W.; Wang, L. Chemosphere 2012, 87, 655.  doi: 10.1016/j.chemosphere.2012.02.002

    46. [46]

      Zhuang, Y.; Ahn, S.; Luthy, R. G. Environ. Sci. Technol. 2010, 44, 8236.  doi: 10.1021/es101601s

    47. [47]

      Ramos, M. A.; Yan, W.; Li, X. Q.; Koel, B. E.; Zhang, W. X. J. Phys. Chem. C 2009, 113, 14591.
       

    48. [48]

      Ai, Z.; Gao, Z.; Zhang, L.; He, W.; Yin, J. J. Environ. Sci. Technol. 2013, 47, 5344.  doi: 10.1021/es4005202

    49. [49]

      Wang, L.; Cao, M.; Ai, Z.; Zhang, L. Environ. Sci. Technol. 2014, 48, 3354.  doi: 10.1021/es404741x

    50. [50]

      Liu, W.; Ai, Z.; Cao, M.; Zhang, L. Appl. Catal. B-Environ. 2014, 150~151, 1.

    51. [51]

      Xiong, Z.; Lai, B.; Yang, P.; Zhou, Y.; Wang, J.; Fang, S. J. Hazard. Mater. 2015, 297, 261.  doi: 10.1016/j.jhazmat.2015.05.006

    52. [52]

      Keenan, C. R.; Sedlak, D. L. Environ. Sci. Technol. 2008, 42, 1262.  doi: 10.1021/es7025664

    53. [53]

      Song, S.; Su, Y.; Adeyemi, S. A.; Zhang, Y. Appl. Catal. B-Environ. 2017, 201, 211.  doi: 10.1016/j.apcatb.2016.07.055

    54. [54]

      Su, Y.; Adeleye, A. S.; Huang, Y.; Zhou, X.; Keller, A. A.; Zhang, Y. Sci. Rep. 2016, 6, 24358.  doi: 10.1038/srep24358

    55. [55]

      Yang, X.; David, M. C. Environ. Sci. Technol. 2010, 44, 8649.  doi: 10.1021/es102451t

    56. [56]

      Ariel, N. G.; Hardiljeet, K. B.; Denis, M. O. Environ. Sci. Technol. 2016, 50, 5243.  doi: 10.1021/acs.est.6b00734

    57. [57]

      David, T.; Dimin, F.; Paul, G. T.; Eun-Ju, K.; Yoon-Seok, C. Environ. Sci. Technol. 2012, 46, 12484.  doi: 10.1021/es303422w

    58. [58]

      Kim, E. J.; Murugesan, K.; Kim, J. H.; Tratnyek, P. G.; Chang, Y. S. Ind. Eng. Chem. Res. 2013, 52, 9343.  doi: 10.1021/ie400165a

    59. [59]

      Eun-Ju, K.; Jae-Hwan, K.; Yoon-Seok, C.; David, T.; Paul, G. T. Environ. Sci. Technol. 2014, 48, 4002.  doi: 10.1021/es405622d

    60. [60]

      Adeleye, A. S.; Stevenson, L. M.; Su, Y.; Nisbet, R. M.; Zhang, Y.; Keller, A. A. Environ. Sci. Technol. 2016, 50, 5597.  doi: 10.1021/acs.est.5b06251

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    10. [10]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    11. [11]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    17. [17]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(100)
  • Abstract views(4630)
  • HTML views(1735)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return