Citation: Chen Haijun, Huang Shuyi, Zhang Zhibin, Liu Yunhai, Wang Xiangke. Synthesis of Functional Nanoscale Zero-Valent Iron Composites for the Application of Radioactive Uranium Enrichment from Environment: A Review[J]. Acta Chimica Sinica, ;2017, 75(6): 560-574. doi: 10.6023/A17010039 shu

Synthesis of Functional Nanoscale Zero-Valent Iron Composites for the Application of Radioactive Uranium Enrichment from Environment: A Review

  • Corresponding author: Liu Yunhai, walton_liu@163.com Wang Xiangke, xkwang@ncepu.edu.cn
  • Received Date: 30 January 2017

    Fund Project: the National Natural Science Foundation of China 21577032the National Natural Science Foundation of China 91326202the Science Challenge Projec JCKY2016212A04

Figures(17)

  • With the widespread using of nuclear energy, the nuclear technology is developed rapidly and the radionuclide pollution such as uranium has become the serious problem for human health. Nanoscale Zero-Valent Iron (nZVI) has become the excellent adsorbent for the removal of uranium ions from environment because of its low cost, easy preparation, high surface-activity and excellent performance for adsorption of uranium. Due to synergistic effect of each monomer, the nZVI nanocomposites have been applied to remove radionuclides and the adsorption capacity of nZVI nanocomposites are improved to a further level. Hence, the preparation of nZVI and its nanocomposites for the efficient removal of radionuclides is one of the hot issues in the field of environmental science. The aim of this review is to summarize and outlook the recent research on the application of nZVI nanocomposites for the efficient removal of radioactive uranium from environment. The preparation of nZVI and its composites, the removal efficiency and removal mechanism has been summarized, and the application of the nZVI nanocomposites in environmental pollution cleanup has also been discussed, expecting for the reference of practical application and future research.
  • 加载中
    1. [1]

      Shi, W.; Yuan, L.; Li, Z.; Lan, J.; Zhao, Y.; Chai, Z. Radio. Chim. Acta 2012, 100, 727.  doi: 10.1524/ract.2012.1961

    2. [2]

      Crane, R. A.; Dickinson, M.; Scott, T. B. Chem. Eng. J. 2015, 262, 319.  doi: 10.1016/j.cej.2014.09.084

    3. [3]

      Bi, Y.; Hyun, S. P.; Kukkadapu, R. K.; Hayes, K. F. Geochim. Cosmochim. Acta 2013, 102, 175.  doi: 10.1016/j.gca.2012.10.032

    4. [4]

      Yue, G. Z.; Gao, R.; Zhao, P. X., Chu, M. F., Shuai, M. B. Acta Chim. Sinica 2016, 74, 657.
       

    5. [5]

      Jang, J.; Dempsey, B. A.; Burgos, W. D. Water Res. 2008, 42, 2269.  doi: 10.1016/j.watres.2007.12.007

    6. [6]

      Yan, S.; Hua, B.; Bao, Z.; Yang, J.; Liu, C.; Deng, B. Environ. Sci. Technol. 2010, 44, 7783.  doi: 10.1021/es9036308

    7. [7]

      Bochud, F. O.; Baechler, S.; Moïse, K. N.; Merlin, N.; Froidevaux, P. Radiat. Meas. 2011, 46, 254.  doi: 10.1016/j.radmeas.2010.11.009

    8. [8]

      Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Water Res. 2002, 36, 4757.  doi: 10.1016/S0043-1354(02)00149-5

    9. [9]

      Meunier, N.; Drogui, P.; Montané, C.; Hausler, R.; Mercier, G.; Blais, J. J. Hazard. Mater. 2006, 137, 581.  doi: 10.1016/j.jhazmat.2006.02.050

    10. [10]

      Azarudeen, R. S.; Subha, R.; Jeyakumar, D.; Burkanudeen, A. R. Sep. Purif. Technol. 2013, 116, 366.  doi: 10.1016/j.seppur.2013.05.043

    11. [11]

      Oehmen, A.; Viegas, R.; Velizarov, S.; Reis, M. A.; Crespo, J. G. Desalination 2006, 199, 405.  doi: 10.1016/j.desal.2006.03.091

    12. [12]

      Li, X.; Du, Y.; Wu, G.; Li, Z.; Li, H.; Sui, H. Chemosphere 2012, 88, 245.  doi: 10.1016/j.chemosphere.2012.03.021

    13. [13]

      Meunier, N.; Drogui, P.; Montané, C.; Hausler, R.; Mercier, G.; Blais, J. J. Hazard. Mater. 2006, 137, 581.  doi: 10.1016/j.jhazmat.2006.02.050

    14. [14]

      Zondervan, E.; Roffel, B. J. Membrane Sci. 2007, 304, 40.  doi: 10.1016/j.memsci.2007.06.041

    15. [15]

      Zou, Y.; Cao, X.; Luo, X.; Liu, Y.; Hua, R.; Liu, Y.; Zhang, Z. J. Radioanal. Nucl. Ch. 2015, 306, 515.  doi: 10.1007/s10967-015-4133-2

    16. [16]

      Sun, Y.; Yang, S.; Chen, Y.; Ding, C.; Cheng, W.; Wang, X. Environ. Sci. Technol. 2015, 49, 4255.  doi: 10.1021/es505590j

    17. [17]

      Sun, Y.; Shao, D.; Chen, C.; Yang, S.; Wang, X. Environ. Sci. Technol. 2013, 47, 9904.  doi: 10.1021/es401174n

    18. [18]

      Sun, Y.; Li, J.; Wang, X. Geochim. Cosmochim. Acta 2014, 140, 621.  doi: 10.1016/j.gca.2014.06.001

    19. [19]

      Li, J.; Chen, C.; Zhang, S.; Wang, X. Environ. Sci. Nano 2014, 1, 488.  doi: 10.1039/C4EN00044G

    20. [20]

      Jin, Z.; Wang, X.; Sun, Y.; Ai, Y.; Wang, X. Environ. Sci. Technol. 2015, 49, 9168.  doi: 10.1021/acs.est.5b02022

    21. [21]

      Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environ. Sci. Technol. 2016, 50, 7290.  doi: 10.1021/acs.est.6b01897

    22. [22]

      Shao, D.; Chen, C.; Wang, X. Chem. Eng. J. 2012, 185, 144.
       

    23. [23]

      Hu, J.; Yang, S.; Wang, X. J. Chem. Technol. Biot. 2012, 87, 673.  doi: 10.1002/jctb.v87.5

    24. [24]

      Wu, X.; Tan, X.; Yang, S.; Wen, T.; Guo, H.; Wang, X.; Xu, A. Water Res. 2013, 47, 4159.  doi: 10.1016/j.watres.2012.11.056

    25. [25]

      Zhao, Y.; Zhao, D.; Chen, C.; Wang, X. J. Colloid. Interface Sci. 2013, 405, 211.  doi: 10.1016/j.jcis.2013.05.004

    26. [26]

      Wen, T.; Wu, X.; Tan, X.; Wang, X.; Xu, A. ACS Appl. Mater. Inter. 2013, 5, 3304.  doi: 10.1021/am4003556

    27. [27]

      Li, Y.; Shi, L.W.; Liu, Z. S.; Yang, G. Q. Acta Chim. Sinica 2012, 70, 683.  doi: 10.3969/j.issn.0251-0790.2012.04.008
       

    28. [28]

      Mukherjee, R.; Kumar, R.; Sinha, A.; Lama, Y.; Saha, A. K. Crit. Rev. Env. Sci. Tec. 2016, 46, 443.  doi: 10.1080/10643389.2015.1103832

    29. [29]

      Sun, Y.; Li, X.; Cao, J.; Zhang, W.; Wang, H. P. Adv. Colloid Interface 2006, 120, 47.  doi: 10.1016/j.cis.2006.03.001

    30. [30]

      Li, S.; Yan, W.; Zhang, W. Green Chem. 2009, 11, 1618.  doi: 10.1039/b913056j

    31. [31]

      Yan, W.; Lien, H.; Koel, B. E.; Zhang, W. Environ. Sci.: Processes & Impacts. 2013, 15, 63.
       

    32. [32]

      Stefaniuk, M.; Oleszczuk, P.; Ok, Y. S. Chem. Eng. J. 2016, 287, 618.  doi: 10.1016/j.cej.2015.11.046

    33. [33]

      Bae, S.; Gim, S.; Kim, H.; Hanna, K. Appl. Catal. B-Environ. 2016, 182, 541.  doi: 10.1016/j.apcatb.2015.10.006

    34. [34]

      Sun, Y.; Li, X.; Cao, J.; Zhang, W.; Wang, H. P. Adv. Colloid Interface 2006, 120, 47.  doi: 10.1016/j.cis.2006.03.001

    35. [35]

      Chen, S.; Hsu, H.; Li, C. J. Nanopart. Res. 2004, 6, 639.  doi: 10.1007/s11051-004-6672-2

    36. [36]

      Yoo, B.; Hernandez, S. C.; Koo, B.; Rheem, Y.; Myung, N. V. Water Sci. Technol. 2007, 55, 149.
       

    37. [37]

      Crane, R. A.; Scott, T. B. J. Hazard Mater. 2012, 211, 112.

    38. [38]

      Machado, S.; Grosso, J. P.; Nouws, H.; Albergaria, J. T.; Delerue-Matos, C. Sci. Total Environ. 2014, 496, 233.  doi: 10.1016/j.scitotenv.2014.07.058

    39. [39]

      Machado, S.; Pinto, S. L.; Grosso, J. P.; Nouws, H.; Albergaria, J. T.; Delerue-Matos, C. Sci. Total Environ. 2013, 445, 1.
       

    40. [40]

      Mystrioti, C.; Xanthopoulou, T. D.; Tsakiridis, P. E.; Papassiopi, N.; Xenidis, A. Sci. Total Environ. 2016, 539, 105.  doi: 10.1016/j.scitotenv.2015.08.091

    41. [41]

      Hoag, G. E.; Collins, J. B.; Holcomb, J. L.; Hoag, J. R.; Nadagouda, M. N.; Varma, R. S. J. Mater. Chem. 2009, 19, 8671.  doi: 10.1039/b909148c

    42. [42]

      Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Sci. Total Environ. 2014, 466, 210.
       

    43. [43]

      Machado, S.; Stawiński, W.; Slonina, P.; Pinto, A. R.; Grosso, J. P.; Nouws, H.; Albergaria, J. T.; Delerue-Matos, C. Sci. Total Environ. 2013, 461, 323.

    44. [44]

      Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R. D.; Lowry, G. V. Environ. Sci. Technol. 2007, 41, 284.  doi: 10.1021/es061349a

    45. [45]

      Huang, P.; Ye, Z.; Xie, W.; Chen, Q.; Li, J.; Xu, Z.; Yao, M. Water Res. 2013, 47, 4050.  doi: 10.1016/j.watres.2013.01.054

    46. [46]

      Ponder, S. M.; Darab, J. G.; Bucher, J.; Caulder, D.; Craig, I.; Davis, L.; Edelstein, N.; Lukens, W.; Nitsche, H.; Rao, L. Chem. Mater. 2001, 13, 479.  doi: 10.1021/cm000288r

    47. [47]

      Wei, Y.; Wu, S.; Yang, S.; Che, C.; Lien, H.; Huang, D. J. Hazard. Mater. 2012, 211, 373.
       

    48. [48]

      Yan, W.; Herzing, A. A.; Li, X.; Kiely, C. J.; Zhang, W. Environ. Sci. Technol. 2010, 44, 4288.  doi: 10.1021/es100051q

    49. [49]

      Liu, T.; Yang, X.; Wang, Z.; Yan, X. Water Res. 2013, 47, 6691.  doi: 10.1016/j.watres.2013.09.006

    50. [50]

      Kanel, S. R.; Choi, H. Water Sci. Technol. 2007, 55, 157.
       

    51. [51]

      Kanel, S. R.; Goswami, R. R.; Clement, T. P.; Barnett, M. O.; Zhao, D. Environ. Sci. Technol. 2007, 42, 896.
       

    52. [52]

      Jin, X.; Zhuang, Z.; Yu, B.; Chen, Z.; Chen, Z. Carbonhyd. Polym. 2016, 136, 1085.  doi: 10.1016/j.carbpol.2015.10.002

    53. [53]

      Li, J.; Li, H.; Zhu, Y.; Hao, Y.; Sun, X.; Wang, L. Appl. Surf. Sci. 2011, 258, 657.  doi: 10.1016/j.apsusc.2011.07.037

    54. [54]

      Wei, Y.; Wu, S.; Yang, S.; Che, C.; Lien, H.; Huang, D. J. Hazard. Mater. 2012, 211, 373.
       

    55. [55]

      Sirk, K. M.; Saleh, N. B.; Phenrat, T.; Kim, H.; Dufour, B.; Ok, J.; Golas, P. L.; Matyjaszewski, K.; Lowry, G. V.; Tilton, R. D. Environ. Sci. Technol. 2009, 43, 3803.  doi: 10.1021/es803589t

    56. [56]

      Li, Z.; Wang, L.; Yuan, L.; Xiao, C.; Mei, L.; Zheng, L.; Zhang, J.; Yang, J.; Zhao, Y.; Zhu, Z. J. Hazard. Mater. 2015, 290, 26.  doi: 10.1016/j.jhazmat.2015.02.028

    57. [57]

      Popescu Hoştuc, I.; Filip, P.; Humelnicu, D.; Humelnicu, I.; Scott, T. B.; Crane, R. A. J. Nucl. Mater. 2013, 443, 250.  doi: 10.1016/j.jnucmat.2013.07.018

    58. [58]

      Liu, M.; Wang, Y.; Chen, L.; Zhang, Y.; Lin, Z. ACS Appl. Mater. Inter. 2015, 7, 7961.  doi: 10.1021/am509184e

    59. [59]

      Jiang, Z.; Lv, L.; Zhang, W.; Du, Q.; Pan, B.; Yang, L.; Zhang, Q. Water Res. 2011, 45, 2191.  doi: 10.1016/j.watres.2011.01.005

    60. [60]

      Xiao, J.; Gao, B.; Yue, Q.; Sun, Y.; Kong, J.; Gao, Y.; Li, Q. J. Taiwan. Inst. Chem. E 2015, 55, 152.  doi: 10.1016/j.jtice.2015.04.010

    61. [61]

      Xiao, J.; Gao, B.; Yue, Q.; Gao, Y.; Li, Q. Chem. Eng. J. 2015, 262, 1226.  doi: 10.1016/j.cej.2014.10.080

    62. [62]

      Baikousi, M.; Georgiou, Y.; Daikopoulos, C.; Bourlinos, A. B.; Filip, J.; Zbořil, R.; Deligiannakis, Y.; Karakassides, M. A. Carbon 2015, 93, 636.  doi: 10.1016/j.carbon.2015.05.081

    63. [63]

      Qiu, X.; Fang, Z.; Liang, B.; Gu, F.; Xu, Z. J. Hazard. Mater. 2011, 193, 70.  doi: 10.1016/j.jhazmat.2011.07.024

    64. [64]

      Sheng, G.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X.; Li, H.; Huang, Y. Carbon 2016, 99, 123.  doi: 10.1016/j.carbon.2015.12.013

    65. [65]

      Li, J.; Chen, C.; Zhang, R.; Wang, X. Chem. Asian J. 2015, 10, 1410.  doi: 10.1002/asia.201500242

    66. [66]

      Huang, G. J.; Chen, Z. G.; Li, M. D.; Yang, B. Acta Chim. Sinica 2016, 74, 789.  doi: 10.11862/CJIC.2016.117
       

    67. [67]

      Zhao, D. M.; Li, Z. W.; Liu, L. D. Acta Chim. Sinica 2014, 72, 185.
       

    68. [68]

      Lai, C. W.; Sun, Y.; Yang, H. Acta Chim. Sinica 2013, 71, 1201.  doi: 10.3866/PKU.WHXB201303202
       

    69. [69]

       

    70. [70]

      Chen, Z.; Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. J. Colloid Interface Sci. 2013, 398, 59.  doi: 10.1016/j.jcis.2013.02.020

    71. [71]

      Kim, S. A.; Kamala-Kannan, S.; Lee, K.; Park, Y.; Shea, P. J.; Lee, W.; Kim, H.; Oh, B. Chem. Eng. J. 2013, 217, 54.  doi: 10.1016/j.cej.2012.11.097

    72. [72]

      Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M. Chem. Eng. J. 2014, 243, 14.  doi: 10.1016/j.cej.2013.12.049

    73. [73]

      Zhang, Y.; Li, Y.; Li, J.; Hu, L.; Zheng, X. Chem. Eng. J. 2011, 171, 526.  doi: 10.1016/j.cej.2011.04.022

    74. [74]

      Li, Y.; Zhang, Y.; Li, J.; Sheng, G.; Zheng, X. Chemosphere 2013, 92, 368.  doi: 10.1016/j.chemosphere.2013.01.030

    75. [75]

      Zhang, Y.; Li, Y.; Zheng, X. Sci. Total Environ. 2011, 409, 625.  doi: 10.1016/j.scitotenv.2010.10.015

    76. [76]

      Li, Y.; Zhang, Y.; Li, J.; Zheng, X. Environ. Pollut. 2011, 159, 3744.  doi: 10.1016/j.envpol.2011.07.016

    77. [77]

      Yuan, N.; Zhang, G.; Guo, S.; Wan, Z. Ultrason. Sonochem. 2016, 28, 62.  doi: 10.1016/j.ultsonch.2015.06.029

    78. [78]

      Chrysochoou, M.; Johnston, C. P.; Dahal, G. J. Hazard. Mater. 2012, 201, 33.
       

    79. [79]

      Li, Y.; Cheng, W.; Sheng, G.; Li, J.; Dong, H.; Chen, Y.; Zhu, L. Appl. Catal. B Environ. 2015, 174, 329.
       

    80. [80]

      Lin, Y.; Chen, Z.; Chen, Z.; Megharaj, M.; Naidu, R. Appl. Clay Sci. 2014, 93, 56.

    81. [81]

      Chen, Z.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. J. Colloid. Interf. Sci. 2011, 363, 601.  doi: 10.1016/j.jcis.2011.07.057

    82. [82]

      Kanel, S. R.; Choi, H. Water Sci. Technol. 2007, 55, 157.
       

    83. [83]

      Xiao, J.; Gao, B.; Yue, Q.; Gao, Y.; Li, Q. Chem. Eng. J. 2015, 262, 1226.  doi: 10.1016/j.cej.2014.10.080

    84. [84]

      Kanel, S. R.; Goswami, R. R.; Clement, T. P.; Barnett, M. O.; Zhao, D. Environ. Sci. Technol. 2007, 42, 896.
       

    85. [85]

      Lee, Y.; Kim, C.; Lee, J.; Shin, H.; Yang, J. Desalin. Water Treat. 2009, 10, 33.  doi: 10.5004/dwt.2009.722

    86. [86]

      Dong, H.; Lo, I. M. C. Water Res. 2013, 47, 2489.  doi: 10.1016/j.watres.2013.02.022

    87. [87]

      Liu, Q.; Bei, Y.; Zhou, F. Cent. Eur. J. Chem. 2009, 7, 79.
       

    88. [88]

      Su, Y.; Adeleye, A. S.; Huang, Y.; Sun, X.; Dai, C.; Zhou, X.; Zhang, Y.; Keller, A. A. Water Res. 2014, 63, 102.  doi: 10.1016/j.watres.2014.06.008

    89. [89]

      Li, J.; Chen, C.; Zhang, R.; Wang, X. Chem. Asian J. 2015, 10, 1410.  doi: 10.1002/asia.201500242

    90. [90]

      Sheng, G.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X.; Li, H.; Huang, Y. Carbon 2016, 99, 123.  doi: 10.1016/j.carbon.2015.12.013

    91. [91]

      Wang, Q.; Qian, H.; Yang, Y.; Zhang, Z.; Naman, C.; Xu, X. J. Contam. Hydrol. 2010, 114, 35.  doi: 10.1016/j.jconhyd.2010.02.006

    92. [92]

      Hoch, L. B.; Mack, E. J.; Hydutsky, B. W.; Hershman, J. M.; Skluzacek, J. M.; Mallouk, T. E. Environ. Sci. Technol. 2008, 42, 2600.  doi: 10.1021/es702589u

    93. [93]

      Xiao, J.; Gao, B.; Yue, Q.; Gao, Y.; Li, Q. Chem. Eng. J. 2015, 262, 1226.  doi: 10.1016/j.cej.2014.10.080

    94. [94]

      Xiao, J.; Gao, B.; Yue, Q.; Sun, Y.; Kong, J.; Gao, Y.; Li, Q. J. Taiwan. Inst. Chem. E 2015, 55, 152.  doi: 10.1016/j.jtice.2015.04.010

    95. [95]

      Shu, H.; Chang, M.; Chen, C.; Chen, P. J. Hazard. Mater. 2010, 184, 499.  doi: 10.1016/j.jhazmat.2010.08.064

    96. [96]

      Sun, Y.; Ding, C.; Cheng, W.; Wang, X. J. Hazard. Mater. 2014, 280, 399.  doi: 10.1016/j.jhazmat.2014.08.023

    97. [97]

      Cao, X. Y.; Li, L.; Chen, H. Acta Chim. Sinica 2010, 68, 1461.
       

    98. [98]

      Crane, R. A.; Scott, T. J. Nanopart. Res. 2014, 16, 1.

    99. [99]

      Wang, L. P.; Wang, Y. P. Acta Chim. Sinica 2007, 65, 737.  doi: 10.3321/j.issn:0567-7351.2007.08.015
       

    100. [100]

      Sheng, G.; Shao, X.; Li, Y.; Li, J.; Dong, H.; Cheng, W.; Gao, X.; Huang, Y. J. Phys. Chem. A 2014, 118, 2952.  doi: 10.1021/jp412404w

    101. [101]

      Xu, J.; Li, Y.; Jing, C.; Zhang, H.; Ning, Y. J. Radioanal. Nucl. Ch. 2014, 299, 329.  doi: 10.1007/s10967-013-2779-1

    102. [102]

      Sheng, G.; Yang, P.; Tang, Y.; Hu, Q.; Li, H.; Ren, X.; Hu, B.; Wang, X.; Huang, Y. Appl. Catal. B-Environ. 2016, 193, 189.  doi: 10.1016/j.apcatb.2016.04.035

    103. [103]

      Hu, B.; Ye, F.; Ren, X.; Zhao, D.; Sheng, G.; Li, H.; Ma, J.; Wang, X.; Huang, Y. Environ. Sci. Nano 2016, 3, 1460.  doi: 10.1039/C6EN00421K

    104. [104]

      O Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Adv. Water Res. 2013, 51, 104.  doi: 10.1016/j.advwatres.2012.02.005

    105. [105]

      Li, X.; Zhang, M.; Liu, Y.; Li, X.; Liu, Y.; Hua, R.; He, C. Water Qual. Expo. Health. 2013, 5, 31.  doi: 10.1007/s12403-013-0084-4

    106. [106]

      Zhang, Z.; Liu, J.; Cao, X.; Luo, X.; Hua, R.; Liu, Y.; Yu, X.; He, L.; Liu, Y. J. Hazard. Mater. 2015, 300, 633.  doi: 10.1016/j.jhazmat.2015.07.058

    107. [107]

      Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C.; Linehan, J. C.; Matson, D. W.; Penn, R. L. Environ. Sci. Technol. 2005, 39, 1221.  doi: 10.1021/es049190u

    108. [108]

      Zhang, W. J. Nanopart. Res. 2003, 5, 323.  doi: 10.1023/A:1025520116015

    109. [109]

      Wang, C.; Zhang, W. Environ. Sci. Technol. 1997, 31, 2154.  doi: 10.1021/es970039c

    110. [110]

      Yan, S.; Hua, B.; Bao, Z.; Yang, J.; Liu, C.; Deng, B. Environ. Sci. Technol. 2010, 44, 7783.  doi: 10.1021/es9036308

    111. [111]

      Dror, I.; Jacov, O. M.; Cortis, A.; Berkowitz, B. ACS Appl. Mater. Inter. 2012, 4, 3416.  doi: 10.1021/am300402q

    112. [112]

      Li, Y.; Li, J.; Zhang, Y. J. Hazard. Mater. 2012, 227, 211.
       

    113. [113]

      Liu, D. Q.; Liu, S. R.; Wang, C. F. J. Synthetic Crystals. 2016, 45, 1328.
       

    114. [114]

      Gao, F.; Zhang, W. M.; Guo, Y. D. China Ceramics. 2015, 51, 10.
       

    115. [115]

      Ding, C.; Cheng, W.; Sun, Y.; Wang, X. Geochim. Cosmochim. Acta 2015, 165, 86.  doi: 10.1016/j.gca.2015.05.036

    116. [116]

      Ling, L.; Zhang, W. J. Am. Chem. Soc. 2015, 137, 2788.  doi: 10.1021/ja510488r

    117. [117]

      Bai, B.; Fang, Y.; Gan, Q.; Yang, Y.; Yuan, L.; Feng, W. Chin. J. Chem. 2015, 33, 361.  doi: 10.1002/cjoc.201400899

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    7. [7]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    15. [15]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    19. [19]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    20. [20]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

Metrics
  • PDF Downloads(14)
  • Abstract views(2087)
  • HTML views(304)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return