Citation: Wang Shaojing, Li Changwei, Li Jin, Chen Bang, Guo Yuan. Novel Coumarin-Based Fluorescent Probes for Detecting Fluoride Ions in Living Cells[J]. Acta Chimica Sinica, ;2017, 75(4): 383-390. doi: 10.6023/A17010029 shu

Novel Coumarin-Based Fluorescent Probes for Detecting Fluoride Ions in Living Cells

  • Corresponding author: Guo Yuan, guoyuan@nwu.edu.cn
  • Received Date: 19 January 2017

    Fund Project: the National Natural Science Foundation of China 21072158the Preferential Financing of Science and Technology Activities in Returned Overseas Graduates in Shaanxi Province 20151190the National Natural Science Foundation of China 21472148

Figures(9)

  • Fluoride, the smallest anion, is one of the most important anions in the human body which is involved in many diseases and many life activities can be displayed by its situation. It is necessary to detect fluoride ions and determine its concentration in organism. Compared to the traditional detection methods, fluorescence probes exhibit high sensitivity, high selectivity and potential for real-time detection. Because coumarin derivatives have strong emission in the visible region, high quantum yield, high photostability and excellent bioactivity, we choose them as fluorophore to prepare new fluorescent probes. Based on the mechanism of intramolecular charge transfer (ICT), the fluorescent probes CS1, CS2 and CS3 that are coumarin-based derivatives were designed, synthesized and utilized in fluoride ions detection. Their structures were confirmed by 1H NMR, 13C NMR, IR and HRMS. Meanwhile, the crystals of CS3 were obtained by slow evaporation of an ether solution at room temperature over a period of a few days. The detection limits of CS1, CS2 and CS3 for fluoride ions were respectively determined as 21.77, 3.52 and 1.99 μmol/L, indicating that probes have a good sensitivity to the detection of fluoride. The selectivity experiment results demonstrated that the three probes were highly selective for fluoride ions over other competitive. The recognition mechanism of the fluorescent response to fluoride ions was verified by HRMS and NMR experiment in this work. A lot of detailed experiment results indicated that the fluorescent response of probes to fluoride ions attributed to the specific fluoride promoted Si-O cleavage. The study of the effect of probes on viability of cells were carried out using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The experimental results indicated that the three probes had low cytotoxicity. Then the three probes were successfully used to fluorescent detect and image fluoride ions in MCF-7 cells by fluorescence spectrum and confocal fluorescence microscopic imaging, respectively.
  • 加载中
    1. [1]

      Gale, P. A. Chem. Soc. Rev. 2010, 39, 3746.  doi: 10.1039/c001871f

    2. [2]

      Bowman-James, K. Acc. Chem. Res. 2005, 38, 671.  doi: 10.1021/ar040071t

    3. [3]

      Gale, P. A. Acc. Chem. Res. 2006, 39, 465.  doi: 10.1021/ar040237q

    4. [4]

      Zhou, Y.; Zhang, J. F.; Yoon, J. Chem. Rev. 2014, 114, 5511.  doi: 10.1021/cr400352m

    5. [5]

      Suksai, C.; Tuntulani, T. Top. Curr. Chem. 2005, 255, 163.

    6. [6]

      Gale, P. A. Chem. Commun. 2011, 47, 82.  doi: 10.1039/C0CC00656D

    7. [7]

      Featherstone, J. D. B. Community. Dent. Oral. Epidemiol. 1999, 27, 31.  doi: 10.1111/com.1999.27.issue-1

    8. [8]

      Bassin, E. B.; Wypij, D.; Davis, R. B.; Mittleman, M. A. Cancer Causes Control 2006, 17, 421.  doi: 10.1007/s10552-005-0500-6

    9. [9]

      Matsui, H.; Morimoto, M.; Horimoto, K.; Nishimura, Y. Toxicol. In Vitro 2007, 21, 1113.  doi: 10.1016/j.tiv.2007.04.006

    10. [10]

      Basha, P. M.; Madhusudhan, N. Neurochem. Res. 2010, 35, 1017.  doi: 10.1007/s11064-010-0150-2

    11. [11]

      Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S. Chem. Rev. 2010, 110, 3958.  doi: 10.1021/cr900401a

    12. [12]

      Barbier, O.; Arreola-Mendoza, L.; DelRazo, L. M. Chem.-Biol. Interact. 2010, 188, 319.  doi: 10.1016/j.cbi.2010.07.011

    13. [13]

      Singh, P.; Barjatiya, M.; Dhing, S.; Bhatnagar, R.; Kothari, S.; Dhar, V. Urol. Res. 2001, 29, 238.  doi: 10.1007/s002400100192

    14. [14]

      Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T. Chem. Soc. Rev. 2010, 39, 3936.  doi: 10.1039/b910560n

    15. [15]

      Hang, Y. P.; Wu, C. Y. Anal. Chim. Acta 2010, 661, 161.  doi: 10.1016/j.aca.2009.12.018

    16. [16]

      Somer, G.; Kalayci, S.; Basak, I. Talanta 2010, 80, 1129.  doi: 10.1016/j.talanta.2009.08.037

    17. [17]

      Tan, W. B.; Leng, T. H.; Lai, G. Q.; Li, Z. F.; Wu, J. F.; Shen, Y. J.; Wang, C. Y. Chin. J. Chem. 2016, 34, 809.  doi: 10.1002/cjoc.v34.8

    18. [18]

      Zhang, L.; Wang, L. M.; Zhang, G. J.; Yu, J. J.; Cai, X. F.; Teng, M. S.; Wu, Y. Chin. J. Chem. 2012, 30, 2823.  doi: 10.1002/cjoc.v30.12

    19. [19]

      Chen, Z. J.; Wang, L. M.; Zou, G. Zhang, L.; Zhang, J. L.; Cai, X. F.; Teng, M. S. Dyes Pigments 2012, 94, 410.  doi: 10.1016/j.dyepig.2012.01.024

    20. [20]

      Chen, W.; Li, Z.; Shi, W.; Ma, H. M. Chem. Commun. 2012, 48, 2809.  doi: 10.1039/c2cc17768d

    21. [21]

      Zhuo, J. B.; Yan, X. Q.; Wang, X. X.; Xie, L. L.; Yuan, Y. F. Chin. J. Org. Chem. 2015, 35, 1090(in Chinese).

    22. [22]

      Wang, F.; Wu, J. S.; Zhuang, X. Q.; Zhang, W. J.; Liu, W. M. Sens. Actuators, B 2010, 146, 260.  doi: 10.1016/j.snb.2010.02.007

    23. [23]

      Qu, Y.; Hua, J.; Tian, H. Org. Lett. 2010, 12, 3320.  doi: 10.1021/ol101081m

    24. [24]

      Wang, J. Q.; Yang, L. Y.; Hou, C.; Cao, H. S. Org. Biomol. Chem. 2012, 10, 6271.  doi: 10.1039/c2ob25903f

    25. [25]

      Ke, I. S.; Myahkostupov, M.; Castellano, F. N. J. Am. Chem. Soc. 2012, 134, 15309.  doi: 10.1021/ja308194w

    26. [26]

      Fu, L.; Jiang, F. L.; Fortin, D.; Harvey, P. D.; Liu, Y. Chem. Commun. 2011, 47, 5503.  doi: 10.1039/c1cc10784d

    27. [27]

      Liu, X. M.; Zhao, Q.; Li, Y.; Song, W. C.; Li, Y. P.; Chang, Z.; Bu, X. H. Chin. Chem. Lett. 2013, 24, 962.  doi: 10.1016/j.cclet.2013.06.032

    28. [28]

      Lv, H. M.; Yang, X. F.; Zhong, Y. G.; Guo, Y.; Li, Z.; Li, H. Anal. Chem. 2014, 86, 1800.  doi: 10.1021/ac4038027

    29. [29]

      Zhao, Z. S.; Guo, X. D.; Li, S. Y.; Yang, G. Q. Acta Chim. Sinica 2016, 74, 593(in Chinese).
       

    30. [30]

      Yu, H. B.; Li, H. L.; Zhang, X. F.; Xiao, Y.; Fang, P. J.; Lv, C. J.; Hou, W. Acta Chim. Sinica 2015, 73, 450(in Chinese).
       

    31. [31]

      Duan, Y. W.; Yang, X. F.; Zhong, Y. G.; Guo, Y.; Li, Z.; Li, H. Anal. Chim. Acta 2015, 859, 59.  doi: 10.1016/j.aca.2014.12.054

    32. [32]

      Yang, Y.; Hang, Y. Y.; Zhang, G. X.; Zhao, R.; Zhang, D. Q. Acta Chim. Sinica 2016, 74, 871(in Chinese).
       

    33. [33]

      Wu, Z. S.; Tang, X. J. Anal. Chem. 2015, 87, 8613.  doi: 10.1021/acs.analchem.5b02578

    34. [34]

      Li, L.; Ji, Y. Z.; Tang, X. J. Anal. Chem. 2014, 86, 10006.  doi: 10.1021/ac503177n

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    11. [11]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    12. [12]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    13. [13]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    19. [19]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(8)
  • Abstract views(1166)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return