Citation: Yi Yunqiang, Wu Juan, Fang Zhanqiang. Identification Influence Mechanism of Humic Acid in the Degradation of Decabromodiphenyl Ether by the BC@Ni/Fe Nanoparticles[J]. Acta Chimica Sinica, ;2017, 75(6): 629-636. doi: 10.6023/A17010018 shu

Identification Influence Mechanism of Humic Acid in the Degradation of Decabromodiphenyl Ether by the BC@Ni/Fe Nanoparticles

Figures(7)

  • The influence mechanism of natural organic matter (NOM) on the removal of contaminant by iron-based nanomaterials remains controversial. In this study, the effect of humic acid (representing NOM) on the degradation of decabromodiphenyl ether (BDE209) by biochar supported Ni/Fe nanoparticles (BC@Ni/Fe) were investigated, which indicated that the removal of BDE209 by BC@Ni/Fe was inhibited in the presence of HA, and with the increase of HA concentration, the inhibitory effect showed more significant. The interaction between HA and BC@Ni/Fe shown that HA was quickly adsorbed on the BC@Ni/Fe. The results of the Zeta potential and sedimentation experiment of BC@Ni/Fe showed that the stability and surface charge of BC@Ni/Fe were effectively improved with the increase of HA concentration, indicating that the inhibitory effect of HA in the debromination of BDE209 by BC@Ni/Fe was not through inhibiting the performance of nanoparticles by HA. The corrosion capacity of BC@Ni/Fe decreased with the increase of HA, which did positively correlate with the effect of HA on the reactivity of BC@Ni/Fe in the removal of BDE209. Additionally, those typical quinone compounds in HA (lawsone and AQDS), which have the electron transfer function, did not serve as an electron transfer medium to directly participating in the reaction process, on the contrary, those compounds did adversely effect on the removal of BDE209. In the coexisting system of HA and BDE209, the equilibrium adsorption capacity of HA on BC@Ni/Fe was 4.75 mg/g. Conversely, the adsorption quantities of BDE209 on BC@Ni/Fe in the absence of HA was 0.31 mg/g, which was about 1.3 times higher than that of in the presence of HA (the adsorption quantities of BDE209 was 0.23 mg/g). Moreover, in the coexistent system of HA and BDE209, the kinetic rate constants for the adsorption of HA was 0.1854 min-1, which was approximately 45 times greater than that of BDE209 (0.0041 min-1). It was shown from the analyzed results that the adsorption rate of HA on BC@Ni/Fe was much greater than that of BDE209. Therefore, that is to say, HA could be preferentially adsorbed onto the surface of BC@Ni/Fe. The adsorbed HA coated on the surface of BC@Ni/Fe occupied the active sites, which hindered the nanoparticles to contact with H2O, reduced the corrosion of Fe0, thus inhibited the removal of BDE209.
  • 加载中
    1. [1]

      Cheng, Z. N.; Wang, Y.; Wang, S. R.; Luo, C. L.; Li, J.; Chaemfa, C.; Jiang, H. Y.; Zhang, G. Environ. Pollut. 2014, 191, 126.  doi: 10.1016/j.envpol.2014.04.025

    2. [2]

      Labadie, P.; Tlili, K.; Alliot, F.; Bourges, C.; Desportes, A.; Chevreuil, M. Anal. Bioanal. Chem. 2010, 396, 865.  doi: 10.1007/s00216-009-3267-x

    3. [3]

      Leal, J. F.; Esteves, V. I.; Santos, E. B. H. Environ. Sci. Technol. 2013, 47, 14010.  doi: 10.1021/es4035254

    4. [4]

      Li, J. X.; Qin, H. J.; Zhang, X. Y.; Guan, X. H. Acta Chim. Sinica 2017, 75, 544(in Chinese).
       

    5. [5]

      Shih, Y. H.; Tai, Y. T. Chemosphere 2010, 78, 200.
       

    6. [6]

      Lin, Y. M.; Chen, Z. X.; Chen, Z. L.; Megharaj, M.; Naidu, R. Appl. Clay Sci. 2014, 93, 56.
       

    7. [7]

      Zhang, X.; Lin, S.; Lu, X. Q.; Chen, Z. L. Chem. Eng. J. 2010, 163, 243.  doi: 10.1016/j.cej.2010.07.056

    8. [8]

      Li, A.; Tai, C.; Zhao, Z. S.; Wang, Y. W.; Zhang, Q. H.; Jiang, G. B.; Hu, J. T. Environ. Sci. Technol. 2007, 41, 6841.  doi: 10.1021/es070769c

    9. [9]

      Wu, X. Q.; Yang, Q.; Xu, D. C.; Zhong, Y.; Luo, K.; Li, X. M.; Chen, H. B.; Zeng, G. M. Ind. Eng. Chem. Res. 2013, 52, 12574.  doi: 10.1021/ie4009524

    10. [10]

      Luo, L.; Luo, L. P.; Cui, X.; Wu, B.; Hou, J.; Xun, B.; Xu, X.; Chen, Y. J. Hazard. Mater. 2011, 185, 639.  doi: 10.1016/j.jhazmat.2010.09.066

    11. [11]

      Wang, X. L.; Xing, B. S. Environ. Sci. Technol. 2007, 41, 8342.  doi: 10.1021/es071290n

    12. [12]

      Zhou, Y.; Gao, B.; Zimmerman, A. R.; Chen, H.; Zhang, M.; Cao, X. Bioresour. Technol. 2014, 152, 538.  doi: 10.1016/j.biortech.2013.11.021

    13. [13]

      Yao, Y.; Gao, B.; Chen, J. J.; Zhang, M.; Inyang, M.; Li, Y. C.; Alva, A.; Yang, L. Y. Bioresour. Technol. 2013, 138, 8.  doi: 10.1016/j.biortech.2013.03.057

    14. [14]

      Devi, P.; Saroha, A. K. Bioresour. Technol. 2014, 169, 525.  doi: 10.1016/j.biortech.2014.07.062

    15. [15]

      Su, H. J.; Fang, Z. Q.; Tsang, P. E.; Fang, J. Z.; Zhao, D. Y. Environ. Pollut. 2016, 214, 94.  doi: 10.1016/j.envpol.2016.03.072

    16. [16]

      Devi, P.; Saroha, A. K. Chem. Eng. J. 2015, 271, 195.  doi: 10.1016/j.cej.2015.02.087

    17. [17]

      Wu, J.; Yi, Y. Q.; Li, Y. Q.; Fang, Z. Q.; Tsang, P. E. J. Hazard. Mater. 2016, 320, 341.  doi: 10.1016/j.jhazmat.2016.08.049

    18. [18]

      Wang, Y. J.; Xiao, H. L.; Wang, F. Sciences in Cold and Arid Regions 2009, 1, 0372.
       

    19. [19]

      Smith, D. S.; Wu, F. C. Appl. Geochem. 2007, 22, 1567.  doi: 10.1016/j.apgeochem.2007.03.019

    20. [20]

      Tan, L.; Liang, B.; Fang, Z. Q.; Xie, Y. Y.; Tsang, E. P. J. Nanopart. Res. 2014, 162, 786.
       

    21. [21]

      Tratnyek, P. G.; Scherer, M. M.; Deng, B. L.; Hu, S. D. Water Res. 2001, 35, 4435.  doi: 10.1016/S0043-1354(01)00165-8

    22. [22]

      Doong, R. N.; Lai, Y. J. Water Res. 2005, 39, 2309.  doi: 10.1016/j.watres.2005.04.036

    23. [23]

      Kang, S. H.; Choi, W. Y. Environ. Sci. Technol. 2009, 43, 878.  doi: 10.1021/es801705f

    24. [24]

      Fang, Z. Q.; Qiu, X. H.; Chen, J. H.; Qiu, X. Q. J. Hazard. Mater. 2011, 185, 958.  doi: 10.1016/j.jhazmat.2010.09.113

    25. [25]

      Giasuddin, A. M.; Kanel, S.; Choi, H. Environ. Sci. Technol. 2007, 41, 2022.  doi: 10.1021/es0616534

    26. [26]

      Bokare, A. D.; Chikate, R. C.; Rode, C. V.; Paknikar, K. M. Appl. Catal., B 2008, 79, 270.  doi: 10.1016/j.apcatb.2007.10.033

    27. [27]

      Dong, H. R.; Ahmad, K.; Zeng, G. M.; Li, Z. W.; Chen, G. Q.; He, Q.; Xie, Y. K.; Wu, Y. N.; Zhao, F.; Zeng, Y. L. Environ. Pollut. 2016, 211, 363.  doi: 10.1016/j.envpol.2016.01.017

    28. [28]

      Xie, Y. Y.; Fang, Z. Q.; Cheng, W.; Tsang, P. E.; Zhao, D. Y. Sci. Total Environ. 2014, 485, 363.
       

    29. [29]

      Xie, Y. Y.; Fang, Z. Q.; Qiu, X. H.; Tsang, E. T.; Liang, B. Chemosphere 2014, 108, 433.  doi: 10.1016/j.chemosphere.2014.01.076

    30. [30]

      Su, H. J.; Fang, Z. Q.; Tsang, P. E.; Zheng, L. C.; Fang, J. Z.; Fang, J. Z.; Zhao, D. Y. J. Hazard. Mater. 2016, 138, 533.

    31. [31]

      Xie, L.; Shang, C. Environ. Sci. Technol. 2005, 39, 1092.  doi: 10.1021/es049027z

    32. [32]

      Zhang, Z.; Cissoko, N.; Wo, J. J.; Xu, X. H. J. Hazard. Mater. 2009, 165, 78.  doi: 10.1016/j.jhazmat.2008.09.080

    33. [33]

      Choi, H.; Al-Abed, S. R.; Agarwal, S.; Dionysiou, D. D. Chem. Mater. 2008, 20, 3649.  doi: 10.1021/cm8003613

    34. [34]

      Zhuang, Y.; Ahn, S.; Seyfferth, A. L.; Yoko, M. S.; Scott, F.; Richard, G. L. Environ. Sci. Technol. 2011, 45, 4896.  doi: 10.1021/es104312h

    35. [35]

      Zhang, Z.; Cissoko, N.; Wo, J. J.; Xu, X. H. J. Hazard. Mater. 2010, 182, 252.  doi: 10.1016/j.jhazmat.2010.06.022

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    4. [4]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    5. [5]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

Metrics
  • PDF Downloads(2)
  • Abstract views(763)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return