Citation: Meng Chao, Wang Hua, Wu Yubin, Fu Xianzhi, Yuan Rusheng. Study on Selective Photocatalytic Oxidation of Ethanol During TiO2 Promoted Water-Splitting Process[J]. Acta Chimica Sinica, ;2017, 75(5): 508-513. doi: 10.6023/A16110641 shu

Study on Selective Photocatalytic Oxidation of Ethanol During TiO2 Promoted Water-Splitting Process

  • Corresponding author: Wu Yubin, yuanrs@fzu.edu.cn
  • Received Date: 28 November 2016

    Fund Project: the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment 2014B01the National Natural Science Foundation of China 21643009the National Key Technologies R & D Program of China 2014BAC13B03the Natural Science Foundation of Fujian Province of China 2015J01046

Figures(4)

  • In this work, the reaction mechanism of photocatalytic oxidation of sacrificial ethanol during water-splitting process by titanium dioxide (TiO2) has been studied. The pure rutile TiO2 or mixed-phase structure titania (P25) was employed as the typical photocatalyst in ethanol oxidation. The as-obtained results showed that the formation of 2, 3-butanediol over TiO2 in heterogeneous systems is mainly due to the photochemical reaction proceeded between acetaldehyde molecule and ethanol molecule instead of the direct coupling of α-hydroxyethyl radicals. This is different from the early work claimed that the fundamental process to produce 2, 3-butanediol is based on the direct coupling of α-hydroxyethyl radicals generated by TiO2 oxidation. The photochemical reaction between acetaldehyde molecule and ethanol molecule to form 2, 3-butanediol can also occur when the concentration of the solid catalyst was reduced to certain degree if using P25 as catalyst in heterogeneous model, and the selectivity of 2, 3-butanediol would change from ca. 60% to 0% when enlarging the concentration of P25 step by step. However, the selectivity of 2, 3-butanediol is relatively invariable when the concentration of catalyst was changed if using rutile as photocatalyst. We thought that the distinct diffusing behaviors for mobile ·OHf and surface bound ·OHs generated on different titania can explain the varied selectivity when the solid concentration of TiO2 changed. The generation and diffusion of ·OH from the surface of P25 (80% anatase) to bulk solution is a key process to inhibit the direct coupling of α-hydroxyethyl radicals to produce acetaldehyde or further overoxidation products, and the reaction zone of ·OHf depends on the concentration of P25. For the case of rutile TiO2 promoted reaction, the lack of mobile ·OHf on rutile TiO2 makes the photochemical reaction between acetaldehyde molecule and ethanol molecule more facile to occur in bulk solution since the surface bound ·OHs can only have chance to attack the surface adsorbed substrates. This may be an important reason to explain why the selectivity of 2, 3-butanediol in ethanol oxidation was not influenced significantly by the variation of rutile TiO2 concentration. All the results regarding ethanol transformation during photocatalytic process achieved here cast some light on the mechanistic understanding of the reactions proceeded on the surface of solid catalyst in heterogeneous model and in the bulk solution when both catalytic step and photochemical step existed simultaneously.
  • 加载中
    1. [1]

      Pan, C.; Gu, Z.-Z.; Dong, L. Acta Chim. Sinica 2009, 67, 1981.  doi: 10.3321/j.issn:0567-7351.2009.17.007
       

    2. [2]

      Lv, X.-J.; Xu, Y.-M.; Wang, Z.; Zhao, J.-C.; Wu, Y.-D. Acta Chim. Sinica 2004, 62, 1455.  doi: 10.3866/PKU.WHXB20041211
       

    3. [3]

      Li, Y.-J.; Cao, T.-P.; Wang, C.-H.; Shao, C.-L. Acta Chim. Sinica 2011, 69, 2597.
       

    4. [4]

      Wan, Z.-Q.; Zheng, S.-N.; Jia, C.-Y.; Yan, W. Acta Chim. Sinica 2009, 67, 403.  doi: 10.3321/j.issn:0251-0790.2009.02.035
       

    5. [5]

      Guo, Q.; Xu, C.-B.; Ren, Z.-F.; Yang, W.-S.; Ma, Z.-B.; Dai, D.-X.; Fan, H.-J.; Minton, T. K.; Yang, X.-M. J. Am. Chem. Soc. 2012, 134, 13366.  doi: 10.1021/ja304049x

    6. [6]

      Xu, C.-B.; Yang, W.-S.; Ren, Z.-F.; Dai, D.-X.; Guo, Q.; Minton, T. K.; Yang, X.-M. J. Am. Chem. Soc. 2013, 135, 19039.  doi: 10.1021/ja4114598

    7. [7]

      Bamwenda, G. R.; Tsubota, S.; Nakamura, T.; Haruta, M. J. Photochem. Photobiol. A 1995, 89, 177.  doi: 10.1016/1010-6030(95)04039-I

    8. [8]

      Idriss, H.; Seebauer, E. G. J. Mol. Catal. A: Chem. 2000, 152, 201.  doi: 10.1016/S1381-1169(99)00297-6

    9. [9]

      Llorca, J.; Homs, N.; Sales, J.; Piscina, P. R. D. L. J. Catal. 2002, 209, 306.  doi: 10.1006/jcat.2002.3643

    10. [10]

      Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nat. Chem. 2011, 3, 489.

    11. [11]

      Meng, C.; Yang, K.; Fu, X.-Z.; Yuan, R.-S. ACS Catal. 2015, 5, 3760.  doi: 10.1021/acscatal.5b00644

    12. [12]

      Lu, H.-Q.; Zhao, J.-H.; Li, L.; Gong, L.-M.; Zheng, J.-F.; Zhang, L.-X.; Wang, Z.-J.; Zhang, J.; Zhu, Z.-P. Energy Environ. Sci. 2011, 4, 3384.  doi: 10.1039/c1ee01476e

    13. [13]

      Yang, P.-J.; Zhao, J.-H.; Cao, B.-Y.; Li, L.; Wang, J.-Z.; Tian, X.-X.; Jia, S.-P.; Zhu, Z.-P. ChemCatChem 2015, 7, 2384.  doi: 10.1002/cctc.201500326

    14. [14]

      Wang, J.; Yang, P.-J.; Cao, B.-Y.; Zhao, J.-H.; Zhu, Z.-P. Appl. Surf. Sci. 2015, 325, 86.  doi: 10.1016/j.apsusc.2014.10.143

    15. [15]

      Lu, H.-Q.; Zhao, B.-B.; Zhang, D.; Lv, Y.-L.; Shi, B.-P.; Shi, X. C.; Wen, J.; Yao, J.-F.; Zhu, Z.-P. J. Photochem. Photobiol. A 2013, 272, 1.  doi: 10.1016/j.jphotochem.2013.08.021

    16. [16]

      Cao, B.-Y.; Zhang, J.; Zhao, J.-H.; Wang, Z.-J.; Yang, P.-J.; Zhang, H.-X.; Li, L.; Zhu, Z.-P. ChemCatChem 2014, 6, 1673.  doi: 10.1002/cctc.v6.6

    17. [17]

      Li, N.; Yan, W. J.; Yang, P.-J.; Zhang, H.-X.; Wang, Z.-J.; Zheng, J.-F.; Jia, S.-P.; Zhu, Z.-P. Green Chem. 2016, 18, 6029.  doi: 10.1039/C6GC00883F

    18. [18]

      Ohno, T.; Izumi, S.; Fujihara, K.; Masaki, Y.; Matsumura, M. J. Phys. Chem. B 2000, 104, 6801.  doi: 10.1021/jp993184g

    19. [19]

      Chai, Z.-G.; Zeng, T.-T.; Li, Q.; Lu, L.-Q.; Xiao, W.-J.; Xu, D.-S. J. Am. Chem. Soc. 2016, 138, 10128.  doi: 10.1021/jacs.6b06860

    20. [20]

      Shimizu, Y.; Sugimoto, S.; Kawanishi, S.; Suzuki, N. Bull. Chem. Soc. Jpn. 1991, 64, 3607.  doi: 10.1246/bcsj.64.3607

    21. [21]

      Asmus, K. D.; Mockel, H.; Henglein, A. J. Phys. Chem. 1973, 77, 1218.  doi: 10.1021/j100629a007

    22. [22]

      Sun, L. Z.; Bolton, J. R. J. Phys. Chem. 1996, 100, 4127.  doi: 10.1021/jp9505800

    23. [23]

      Wu, W.-M.; Wen, L.-R.; Shen, L.-J.; Liang, R.-W.; Yuan, R.-S.; Wu, L. Appl. Catal. B 2013, 130~131, 163.

    24. [24]

      Wu, W.-M.; Liu, G.; Liang, S.-J.; Chen, Y.; Shen, L.-J.; Zheng, H.-R.; Yuan, R.-S.; Hou, Y.-D.; Wu, L. J. Catal. 2012, 290, 13.  doi: 10.1016/j.jcat.2012.02.005

    25. [25]

      Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543.  doi: 10.2138/am-2000-0416

    26. [26]

      Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515.  doi: 10.1016/j.surfrep.2008.10.001

    27. [27]

      Li, R.-G.; Weng, Y.-X.; Zhou, X.; Wang, X.-L.; Mi, Y.; Chong, R.-F.; Han, H.-X.; Li, C. Energy Environ. Sci. 2015, 8, 2377.  doi: 10.1039/C5EE01398D

    28. [28]

      Kavan, L.; Gratzel, M.; Gilbert, S. E.; Klemenz, C.; Scheel, J. J. Am. Chem. Soc. 1996, 118, 6716.  doi: 10.1021/ja954172l

    29. [29]

      Yamakata, A.; Ishibashi, T. A.; Onishi, H. Chem. Phys. 2007, 339, 133.  doi: 10.1016/j.chemphys.2007.05.010

    30. [30]

      Xu, M.; Gao, Y.; Moreno, E. M.; Kunst, M.; Muhler, M.; Wang, Y.; Idriss, H.; Wçll, C. Phys. Rev. Lett. 2011, 106, 138302.  doi: 10.1103/PhysRevLett.106.138302

    31. [31]

      Tang, H.; Prasad, K.; Sanjines, R.; Schmid, P. E.; Levy, F. J. Appl. Phys. 1994, 75, 2042.  doi: 10.1063/1.356306

    32. [32]

      Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Sci. Rep. 2014, 4, 4043.

    33. [33]

      Goto, H.; Hanada, Y.; Ohno, T.; Matsumura, M. J. Catal. 2004, 225, 223.  doi: 10.1016/j.jcat.2004.04.001

    34. [34]

      Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M. J. Am. Chem. Soc. 2010, 132, 8453.  doi: 10.1021/ja102305e

    35. [35]

      Kim, W.; Tachikawa, T.; Moon, G. H.; Majima, T.; Choi, W. Angew. Chem., Int. Ed. 2014, 53, 14036.  doi: 10.1002/anie.v53.51

  • 加载中
    1. [1]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    2. [2]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    8. [8]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    9. [9]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    10. [10]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    11. [11]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    17. [17]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    18. [18]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    19. [19]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(27)
  • Abstract views(3251)
  • HTML views(900)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return