Citation: Zhao Ruinan, Hu Mancheng, Li Shuni, Zhai Quanguo, Jiang Yucheng. Immobilization of Chloroperoxidase in Metal Organic Framework and Its Catalytic Performance[J]. Acta Chimica Sinica, ;2017, 75(3): 293-299. doi: 10.6023/A16110593 shu

Immobilization of Chloroperoxidase in Metal Organic Framework and Its Catalytic Performance

  • Corresponding author: Jiang Yucheng, jyc@snnu.edu.cn
  • Received Date: 9 November 2016

    Fund Project: the National Natural Science Foundation of China 21176150

Figures(14)

  • A rapid and efficient preparation of CPO@ZIF-8 by "one pot " method at 30℃ in aqueous solution is presented in this paper. The structure of zeolitic imidazolate frameworks (ZIF-8) was constructed while chloroperoxidase (CPO) was incorporated into the channel. Mild reaction conditions ensure maintaining the enzyme activity in the preparation of immobilized CPO. The synthesis of CPO@ZIF-8 was performed by mixing zinc nitrate solution and polyvinylpyrrolidone solution (PVP, Mw:10000, 10 mg/mL, 400 μL), chloroperoxidase (CPO) (0.214 mmol/L, 500 μL) and 2-methylimidazole (1.25 mol/L, 25 mL) and stirring for 15 min at 30℃, followed by washing and centrifuging for 3 cycles at 4℃ for 8 min. The structure of CPO@ZIF-8 was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), indicating that the incorporation of enzyme molecules did not affect the crystal structure of ZIF-8. To further confirm the incorporation of enzyme into ZIF-8, CPO was labeled by fluorescent probes fluorescein isothiocyanate (FITC) and subjected to the same procedure to synthesize the FITC-CPO@ZIF-8. Confocal laser scanning microscopy (CLSM) proved that CPO was distributed evenly and embedded in the whole framework of CPO@ZIF-8. Compared with the method of preparing ZIF-8 firstly, and then immobilizing enzyme molecule by physical adsorption, the immobilization efficiency of enzyme was enhanced by introducing the enzyme into the whole framework, moreover, the catalytic efficiency of the immobilized CPO was increased due to high specific surface area of ZIF-8. The catalytic performance of the CPO@ZIF-8 was evaluated by the conversion rate of 2, 2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS). The rigid shielding environment provided by the three-dimensional channel of ZIF-8 effectively improved the thermal stability, pH stability, and tolerance to organic solvents of the CPO@ZIF-8 under harsh reaction conditions compared with the free enzyme. When incubated at 50℃, 60℃, 70℃, 80℃ and 90℃ for 1 h, 97.1%, 87.8%, 80.2%, 68.1% and 41.5% of the activity of CPO@ZIF-8 were reserved. When incubated at 50℃, 60℃, 70℃ and 80℃ for 3 h, there were still 91.4%, 77.8%, 64.7% and 50.3% of the activity remained. The tolerance of CPO@ZIF-8 to organic solvent DMF, methanol and methyl cyanide was enhanced to 30%~40%.
  • 加载中
    1. [1]

      Sheldon, R. A.; van Pelt, S. Chem. Soc. Rev. 2013, 42, 6223.  doi: 10.1039/C3CS60075K

    2. [2]

      Zucca, P.; Sanjust, E. Molecules 2014, 19, 14139.  doi: 10.3390/molecules190914139

    3. [3]

      Hanefeld, U.; Gardossi, L.; Magner, E. Chem. Soc. Rev. 2009, 38, 453.  doi: 10.1039/B711564B

    4. [4]

      Huang, W. G.; Sun, H. F.; Zhang, S. J. Acta Chim. Sinica 2016, 74(6), 518. (in Chinese).  doi: 10.6023/A16030158
       

    5. [5]

      Wu, X.; Hou, M.; Ge, J. Catal. Sci. Technol. 2015, 5, 5077.  doi: 10.1039/C5CY01181G

    6. [6]

      Mehta, J.; Bhardwaj, N.; Bhardwaj, S. K.; Kim, K.-H.; Deep, A. Coord. Chem. Rev. 2016, 322, 30.  doi: 10.1016/j.ccr.2016.05.007

    7. [7]

      Lykourinou, V.; Chen, Y.; Wang, X. S.; Meng, L.; Hoang, T.; Ming, L. J.; Musselman, R. L.; Ma, S. J. Am. Chem. Soc. 2011, 133, 10382.  doi: 10.1021/ja2038003

    8. [8]

      Liu, W. L.; Yang, N. S.; Chen, Y. T.; Lirio, S.; Wu, C. Y.; Lin, C. H.; Huang, H. Y. Chemistry 2015, 21, 115.  doi: 10.1002/chem.201405252

    9. [9]

      Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming, L. J.; Larsen, R. W.; Ma, S. J. Am. Chem. Soc. 2012, 134, 13188.  doi: 10.1021/ja305144x

    10. [10]

      Li, P.; Moon, S. Y.; Guelta, M. A.; Harvey, S. P.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2016, 138, 8052  doi: 10.1021/jacs.6b03673

    11. [11]

      Feng, D.; Liu, T. F.; Su, J.; Bosch, M.; Wei, Z.; Wan, W.; Yuan, D.; Chen, Y. P.; Wang, X.; Wang, K.; Lian, X.; Gu, Z. Y.; Park, J.; Zou, X.; Zhou, H. C. Nat. Commun. 2015, 6, 5979.  doi: 10.1038/ncomms6979

    12. [12]

      Jung, S.; Kim, Y.; Kim, S. J.; Kwon, T. H.; Huh, S.; Park, S. Chem. Commun. 2011, 47, 290.

    13. [13]

      Wang, X.; Makal, T. A.; Zhou, H.-C. Aust. J. Chem. 2014, 67, 1629.  doi: 10.1071/CH14104

    14. [14]

      Liu, W. L.; Wu, C. Y.; Chen, C. Y.; Singco, B.; Lin, C. H.; Huang, H. Y. Chemistry 2014, 20, 8923

    15. [15]

      Liu, W.-L.; Lo, S.-H.; Singco, B.; Yang, C.-C.; Huang, H.-Y.; Lin, C.-H. J. Mater. Chem. 2013, 1, 928.  doi: 10.1039/c3tb00257h

    16. [16]

      Nadar, S. S.; Rathod, V. K. Int. J. Biol. Macromol. 2017, 95, 511.  doi: 10.1016/j.ijbiomac.2016.11.084

    17. [17]

      Wang, X. L.; Ge, J.; Yang, C.; Hou, M.; Liu, Z. Chem. Commun. 2015, 51, 13408.  doi: 10.1039/C5CC05136C

    18. [18]

      Lyu, F. J.; Zhang, Y. F.; Zare, R.; Ge, J.; Liu, Z. Nano Lett. 2014, 14, 5761.  doi: 10.1021/nl5026419

    19. [19]

      Manoj, K. M.; Hager, L. P. Biochemistry 2008, 47, 2997.  doi: 10.1021/bi7022656

    20. [20]

      Wang, L. M.; Wu, J. Y.; Jiang, Y. C.; Hu, M. C.; Li, S. N.; Zhai, Q. G. Acta Chim. Sinica 2012, 70, 465(in Chinese).  doi: 10.6023/A1106212
       

    21. [21]

    22. [22]

      Liu, L. X.; Zhang, J.; Tan, Y.; Jiang, Y. C.; Hu, M. C.; Li, S. N.; Zhai. Q. G. Chem. Eng. J. 2014, 244, 9.  doi: 10.1016/j.cej.2014.01.063

    23. [23]

      Muñoz-Guerrero, F. A.; Águila, S.; Vazquez-Duhalt, R.; Campos, C. H.; Torres, C. C.; Alderete, J. B. Catal. Commun. 2016, 77, 52.  doi: 10.1016/j.catcom.2016.01.017

    24. [24]

      Liu, M. M.; Lv, W. M.; Shi, X. F.; Fan, B. B.; Li, R. F. Chinese J. Inorg. Chem. 2014, 30, 579(in Chinese).
       

    25. [25]

      Jian, M.; Liu, B.; Liu, R.; Qu, J.; Wang, H.; Zhang, X. RSC Adv. 2015, 5, 48433.  doi: 10.1039/C5RA04033G

    26. [26]

      Reszka, K. J.; Britigan, B. E. Arch. Biochem. Biophys. 2007, 466, 164.  doi: 10.1016/j.abb.2007.06.027

    27. [27]

      Manoj, k. m.; Baburaj, A.; Ephraim, B.; Pappachan, F.; Maviliparambathu, P. P.; Vijayan, U. K.; Narayanan, S. V.; Periasamy, K.; George, E. A.; Mathew, L. T. PloS one 2010, 5, 5.

    28. [28]

      Manoj, K. M.; Hager, L. P. Biochemistry 2008, 47, 2997.  doi: 10.1021/bi7022656

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    3. [3]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    4. [4]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    12. [12]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    13. [13]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    14. [14]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    15. [15]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    16. [16]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    17. [17]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    19. [19]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    20. [20]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

Metrics
  • PDF Downloads(22)
  • Abstract views(2574)
  • HTML views(570)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return