Citation: Zhao Ruinan, Hu Mancheng, Li Shuni, Zhai Quanguo, Jiang Yucheng. Immobilization of Chloroperoxidase in Metal Organic Framework and Its Catalytic Performance[J]. Acta Chimica Sinica, ;2017, 75(3): 293-299. doi: 10.6023/A16110593 shu

Immobilization of Chloroperoxidase in Metal Organic Framework and Its Catalytic Performance

  • Corresponding author: Jiang Yucheng, jyc@snnu.edu.cn
  • Received Date: 9 November 2016

    Fund Project: the National Natural Science Foundation of China 21176150

Figures(14)

  • A rapid and efficient preparation of CPO@ZIF-8 by "one pot " method at 30℃ in aqueous solution is presented in this paper. The structure of zeolitic imidazolate frameworks (ZIF-8) was constructed while chloroperoxidase (CPO) was incorporated into the channel. Mild reaction conditions ensure maintaining the enzyme activity in the preparation of immobilized CPO. The synthesis of CPO@ZIF-8 was performed by mixing zinc nitrate solution and polyvinylpyrrolidone solution (PVP, Mw:10000, 10 mg/mL, 400 μL), chloroperoxidase (CPO) (0.214 mmol/L, 500 μL) and 2-methylimidazole (1.25 mol/L, 25 mL) and stirring for 15 min at 30℃, followed by washing and centrifuging for 3 cycles at 4℃ for 8 min. The structure of CPO@ZIF-8 was characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), indicating that the incorporation of enzyme molecules did not affect the crystal structure of ZIF-8. To further confirm the incorporation of enzyme into ZIF-8, CPO was labeled by fluorescent probes fluorescein isothiocyanate (FITC) and subjected to the same procedure to synthesize the FITC-CPO@ZIF-8. Confocal laser scanning microscopy (CLSM) proved that CPO was distributed evenly and embedded in the whole framework of CPO@ZIF-8. Compared with the method of preparing ZIF-8 firstly, and then immobilizing enzyme molecule by physical adsorption, the immobilization efficiency of enzyme was enhanced by introducing the enzyme into the whole framework, moreover, the catalytic efficiency of the immobilized CPO was increased due to high specific surface area of ZIF-8. The catalytic performance of the CPO@ZIF-8 was evaluated by the conversion rate of 2, 2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS). The rigid shielding environment provided by the three-dimensional channel of ZIF-8 effectively improved the thermal stability, pH stability, and tolerance to organic solvents of the CPO@ZIF-8 under harsh reaction conditions compared with the free enzyme. When incubated at 50℃, 60℃, 70℃, 80℃ and 90℃ for 1 h, 97.1%, 87.8%, 80.2%, 68.1% and 41.5% of the activity of CPO@ZIF-8 were reserved. When incubated at 50℃, 60℃, 70℃ and 80℃ for 3 h, there were still 91.4%, 77.8%, 64.7% and 50.3% of the activity remained. The tolerance of CPO@ZIF-8 to organic solvent DMF, methanol and methyl cyanide was enhanced to 30%~40%.
  • 加载中
    1. [1]

      Sheldon, R. A.; van Pelt, S. Chem. Soc. Rev. 2013, 42, 6223.  doi: 10.1039/C3CS60075K

    2. [2]

      Zucca, P.; Sanjust, E. Molecules 2014, 19, 14139.  doi: 10.3390/molecules190914139

    3. [3]

      Hanefeld, U.; Gardossi, L.; Magner, E. Chem. Soc. Rev. 2009, 38, 453.  doi: 10.1039/B711564B

    4. [4]

      Huang, W. G.; Sun, H. F.; Zhang, S. J. Acta Chim. Sinica 2016, 74(6), 518. (in Chinese).  doi: 10.6023/A16030158
       

    5. [5]

      Wu, X.; Hou, M.; Ge, J. Catal. Sci. Technol. 2015, 5, 5077.  doi: 10.1039/C5CY01181G

    6. [6]

      Mehta, J.; Bhardwaj, N.; Bhardwaj, S. K.; Kim, K.-H.; Deep, A. Coord. Chem. Rev. 2016, 322, 30.  doi: 10.1016/j.ccr.2016.05.007

    7. [7]

      Lykourinou, V.; Chen, Y.; Wang, X. S.; Meng, L.; Hoang, T.; Ming, L. J.; Musselman, R. L.; Ma, S. J. Am. Chem. Soc. 2011, 133, 10382.  doi: 10.1021/ja2038003

    8. [8]

      Liu, W. L.; Yang, N. S.; Chen, Y. T.; Lirio, S.; Wu, C. Y.; Lin, C. H.; Huang, H. Y. Chemistry 2015, 21, 115.  doi: 10.1002/chem.201405252

    9. [9]

      Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming, L. J.; Larsen, R. W.; Ma, S. J. Am. Chem. Soc. 2012, 134, 13188.  doi: 10.1021/ja305144x

    10. [10]

      Li, P.; Moon, S. Y.; Guelta, M. A.; Harvey, S. P.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2016, 138, 8052  doi: 10.1021/jacs.6b03673

    11. [11]

      Feng, D.; Liu, T. F.; Su, J.; Bosch, M.; Wei, Z.; Wan, W.; Yuan, D.; Chen, Y. P.; Wang, X.; Wang, K.; Lian, X.; Gu, Z. Y.; Park, J.; Zou, X.; Zhou, H. C. Nat. Commun. 2015, 6, 5979.  doi: 10.1038/ncomms6979

    12. [12]

      Jung, S.; Kim, Y.; Kim, S. J.; Kwon, T. H.; Huh, S.; Park, S. Chem. Commun. 2011, 47, 290.

    13. [13]

      Wang, X.; Makal, T. A.; Zhou, H.-C. Aust. J. Chem. 2014, 67, 1629.  doi: 10.1071/CH14104

    14. [14]

      Liu, W. L.; Wu, C. Y.; Chen, C. Y.; Singco, B.; Lin, C. H.; Huang, H. Y. Chemistry 2014, 20, 8923

    15. [15]

      Liu, W.-L.; Lo, S.-H.; Singco, B.; Yang, C.-C.; Huang, H.-Y.; Lin, C.-H. J. Mater. Chem. 2013, 1, 928.  doi: 10.1039/c3tb00257h

    16. [16]

      Nadar, S. S.; Rathod, V. K. Int. J. Biol. Macromol. 2017, 95, 511.  doi: 10.1016/j.ijbiomac.2016.11.084

    17. [17]

      Wang, X. L.; Ge, J.; Yang, C.; Hou, M.; Liu, Z. Chem. Commun. 2015, 51, 13408.  doi: 10.1039/C5CC05136C

    18. [18]

      Lyu, F. J.; Zhang, Y. F.; Zare, R.; Ge, J.; Liu, Z. Nano Lett. 2014, 14, 5761.  doi: 10.1021/nl5026419

    19. [19]

      Manoj, K. M.; Hager, L. P. Biochemistry 2008, 47, 2997.  doi: 10.1021/bi7022656

    20. [20]

      Wang, L. M.; Wu, J. Y.; Jiang, Y. C.; Hu, M. C.; Li, S. N.; Zhai, Q. G. Acta Chim. Sinica 2012, 70, 465(in Chinese).  doi: 10.6023/A1106212
       

    21. [21]

    22. [22]

      Liu, L. X.; Zhang, J.; Tan, Y.; Jiang, Y. C.; Hu, M. C.; Li, S. N.; Zhai. Q. G. Chem. Eng. J. 2014, 244, 9.  doi: 10.1016/j.cej.2014.01.063

    23. [23]

      Muñoz-Guerrero, F. A.; Águila, S.; Vazquez-Duhalt, R.; Campos, C. H.; Torres, C. C.; Alderete, J. B. Catal. Commun. 2016, 77, 52.  doi: 10.1016/j.catcom.2016.01.017

    24. [24]

      Liu, M. M.; Lv, W. M.; Shi, X. F.; Fan, B. B.; Li, R. F. Chinese J. Inorg. Chem. 2014, 30, 579(in Chinese).
       

    25. [25]

      Jian, M.; Liu, B.; Liu, R.; Qu, J.; Wang, H.; Zhang, X. RSC Adv. 2015, 5, 48433.  doi: 10.1039/C5RA04033G

    26. [26]

      Reszka, K. J.; Britigan, B. E. Arch. Biochem. Biophys. 2007, 466, 164.  doi: 10.1016/j.abb.2007.06.027

    27. [27]

      Manoj, k. m.; Baburaj, A.; Ephraim, B.; Pappachan, F.; Maviliparambathu, P. P.; Vijayan, U. K.; Narayanan, S. V.; Periasamy, K.; George, E. A.; Mathew, L. T. PloS one 2010, 5, 5.

    28. [28]

      Manoj, K. M.; Hager, L. P. Biochemistry 2008, 47, 2997.  doi: 10.1021/bi7022656

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    9. [9]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    10. [10]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    12. [12]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    19. [19]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    20. [20]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

Metrics
  • PDF Downloads(22)
  • Abstract views(2456)
  • HTML views(553)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return