Citation: Tan Xiaoyu, Yang Shaoyan, Li Huijie. Epitaxy of Ⅲ-Nitrides Based on Two-Dimensional Materials[J]. Acta Chimica Sinica, ;2017, 75(3): 271-279. doi: 10.6023/A16100552 shu

Epitaxy of Ⅲ-Nitrides Based on Two-Dimensional Materials

  • Corresponding author: Yang Shaoyan, sh-yyang@semi.ac.cn Li Huijie, hjli2009@semi.ac.cn
  • Received Date: 17 October 2016

    Fund Project: National Key Research and Development Plan 2016YFB0400601the National Natural Science Foundation of China 11275228the Guangdong Provincial Scientific and Technologic Planning Program 2014B010119002the National Natural Science Foundation of China 61504128the 863 High Technology R & D Program of China 2015AA016801the National Natural Science Foundation of China 61504129the 863 High Technology R & D Program of China 2014AA032609the National Natural Science Foundation of China 61274041

Figures(13)

  • Ⅲ-nitrides have attracted huge interest from commercial market of lighting, power electronics and communications due to their unique optoelectronic properties, while their further enlargement is hampered by the limited crystal quality resulting from current heterogeneous epitaxy techniques. Recently, the exotic properties of layered two-dimensional materials have caught wide attention. The weak van der Waals interaction between the layers of two dimensional materials may help Ⅲ-nitrides improving the crystal quality by relieving mismatching between lattice and thermal expansion, reducing costs of preparation by reusing expensive substrate, and realizing the fabrication of flexible devices, which will facilitates their generalization in wearable and foldable applications. This review present a comprehensive summary on the recent progress in regard of the Ⅲ-nitride synthesis on the two-dimensional materials, including graphene, hexagonal boron nitride and transition metal dichalcogenides. Various attempts and their results are presented. Two important aspects in the preparation of GaN and AlN on two-dimensional materials are presented, which are the nucleation on defects and the lateral overgrowth of the nitride islands. A detailed knowledge on the nucleation and lateral overgrowth mechanism and precise controlling on the density and distribution of defects are indispensable for the ultimate realization of this route. The challenges and opportunities are also discussed.
  • 加载中
    1. [1]

      Moram, M. A.; Vickers, M. E. Rep. Prog. Phys. 2009, 72, 036502.  doi: 10.1088/0034-4885/72/3/036502

    2. [2]

      Wu, J.; Walukiewicz, W.; Yu, K. M.; Ager Ⅲ, J. W.; Haller, E. E.; Lu, H.; William, J. S.; Metzger, W. K.; Sarah, K. J. Appl. Phys.2003, 94, 6477.  doi: 10.1063/1.1618353

    3. [3]

      Flack, T. J.; Pushpakaran, B. N.; Bayne, S. B. J. Electron. Ma-ter.2016, 45, 2673.  doi: 10.1007/s11664-016-4435-3

    4. [4]

      Florian, C.; Cignani, R.; Santarelli, A.; Filicori, F.; Longo, F. In IEEE MTT-S International Microwave Symposium Digest, IEEE, New York, 2013.

    5. [5]

      Cimalla, V.; Pezoldt, J.; Ambacher, O. J. Phys. D:Appl. Phys. 2007, 40, 6386.  doi: 10.1088/0022-3727/40/20/S19

    6. [6]

      Hou, Y. H.; Zhang, M.; Han, G. W.; Si, C. W.; Zhao, Y. M.; Ning, J. J. Semicod. 2016, 37, 101001.  doi: 10.1088/1674-4926/37/10/101001

    7. [7]

      Zhao, Z. F. Ph. D. Dissertation, University of Chinese Academy of Sciences, Beijing, 2016.

    8. [8]

      Wu, Y. F.; Guerrero, J.; McKay, J.; Smith, K. In IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), IEEE, New York, 2014, pp. 30~32, 13~15.

    9. [9]

      Avrutin, V.; Silversmith, D. J.; Mori, Y.; Kawamura, F.; Kitaoka, Y.; Morkoc, H. Proc. IEEE. 2010, 98, 1302.  doi: 10.1109/JPROC.2010.2044967

    10. [10]

      Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Appl. Phys. Lett. 1986, 48, 353.  doi: 10.1063/1.96549

    11. [11]

      Nakamura, S. Jpn. J. Appl. Phys., Part 21991, 30, L1705.  doi: 10.1143/JJAP.30.L1705

    12. [12]

      Cui, L.; Wang, G. G.; Zhang, H. Y.; Zhou, F. Q.; Han, J. C. J. Inorg. Mater. 2012, 27, 897.  doi: 10.3724/SP.J.1077.2012.11785

    13. [13]

      Kato, Y.; Kitamura, S.; Hiramatsu, K.; Sawaki, N. J. Cryst. Growth.1994, 144, 133.  doi: 10.1016/0022-0248(94)90448-0

    14. [14]

      Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. J. Phys. D:Appl. Phys. 2010, 43, 354002.  doi: 10.1088/0022-3727/43/35/354002

    15. [15]

      Wong, Y. Y.; Chiu, Y. S.; Luong, T. T.; Lin, T. M.; Ho, Y. T.; Lin, Y. C.; Chang, E. Y. In Growth and Fabrication of AlGaN/GaN HEMT on SiC Substrate, 10th IEEE International Conference on Semiconductor Electronics, IEEE, New York, 2012, pp. 729~732.

    16. [16]

      Chung, K.; Lee, C. H.; Yi, G. C. Science, 2010, 330, 655.  doi: 10.1126/science.1195403

    17. [17]

      Wong, W. S.; Sands, T.; Cheung, N. W. Appl. Phys. Lett. 1998, 72, 599.  doi: 10.1063/1.120816

    18. [18]

      Zang, K. Y.; Cheong, D. W. C.; Liu, H. F.; Liu, H.; Teng, J. H.; Chua, S. J. Nanoscale Res. Lett. 2010, 5, 1051.  doi: 10.1007/s11671-010-9601-6

    19. [19]

      Geim, A. K.; Grigorieva, I. V. Nature 2013, 499, 419.  doi: 10.1038/nature12385

    20. [20]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    21. [21]

      Geim, A. K.; Novoselov, K. S. Nat. Mater 2007, 6, 183.  doi: 10.1038/nmat1849

    22. [22]

      Lin, Y. W.; Guo, X. F. Acta Chim. Sinica 2014, 72, 277(in Chinese).  doi: 10.6023/A13080908
       

    23. [23]

      Hu, H. X.; Hu, Z. G.; Ren, X. Y.; Yang, Y. Y.; Qiang, R. B.; An, N.; Wu, H. Y. Chin. J. Chem. 2015, 33, 199.  doi: 10.1002/cjoc.v33.2

    24. [24]

      Jiang, S. Z.; , Qiu, H. W.; Gao, S. S.; Chen, P. X.; Li, Z.; Yu, K. Y.; Yue, W. W.; Yang, C.; Huo, Y. Y.; Wang, S. Y. Chin. J. Chem. 2016, 34, 1039.  doi: 10.1002/cjoc.v34.10

    25. [25]

      Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.  doi: 10.1038/nature07719

    26. [26]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6, 147.  doi: 10.1038/nnano.2010.279

    27. [27]

      He, X. X.; Liu, F. C.; Zeng, Q. S.; Liu, Z. Acta Chim. Sinica 2015, 73, 924(in Chinese).  doi: 10.6023/A15040280
       

    28. [28]

      Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Nat. Nanotechnol. 2013, 8, 497.  doi: 10.1038/nnano.2013.100

    29. [29]

      Lou, Z.; Liang, Z. Z.; Shen, G. Z. J. Semicond. 2016, 37, 091001.  doi: 10.1088/1674-4926/37/9/091001

    30. [30]

      Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nat. Mater. 2007, 6, 652.  doi: 10.1038/nmat1967

    31. [31]

      Jiang, S. Z.; , Qiu, H. W.; Gao, S. S.; Chen, P. X.; Li, Z.; Yu, K. Y.; Yue, W. W.; Yang, C.; Huo, Y. Y.; Wang, S. Y. Chin. J. Chem. 2016, 34, 1039.  doi: 10.1002/cjoc.v34.10

    32. [32]

      Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 7296.  doi: 10.1021/ja201269b

    33. [33]

      Cheng, K.; Leys, M.; Degroote, S.; Daele, B. V.; Boeykens, S.; Derluyn, J.; Germain, M.; Tendeloo, G. V.; Engelen, J.; Borghs, G. J. Electron. Mater. 2006, 35, 592.  doi: 10.1007/s11664-006-0105-1

    34. [34]

      Lahreche, H.; Vennegues, P.; Beaumont, B.; Gibart, P. J. Cryst. Growth 1999, 205, 245.  doi: 10.1016/S0022-0248(99)00299-7

    35. [35]

      Ueda, T.; Huang, T. F.; Sprutte, S.; Lee, H.; Yuri, M.; Itoh, K.; Baba, T.; Harris, J. S. J. Cryst. Growth, 1998, 187, 340.  doi: 10.1016/S0022-0248(97)00886-5

    36. [36]

      Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.  doi: 10.1038/nature04235

    37. [37]

      Bae, S. K.; Kim, H. K.; Lee, Y. B.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Tian, L.; Kim, H. R.; Song, Y. Ⅱ; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Nat. Nanotechnol. 2010, 5, 574.  doi: 10.1038/nnano.2010.132

    38. [38]

      Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K.; Xie, X. M.; Jiang, M. H. Nat. Mater. 2016, 15, 43.

    39. [39]

      Rana, K.; Singh, J.; Ahn, J. H. J. Mater. Chem. C 2014, 2, 2646.  doi: 10.1039/c3tc32264e

    40. [40]

      Hiroki, M.; Kumakura, K.; Kobayashi, Y.; Akasaka, T.; Makimoto, T.; Yamamoto, H. Appl, Phys. Lett. 2014, 105, 193509.  doi: 10.1063/1.4901938

    41. [41]

      Choi, J. K.; Huh, J. H.; Kim, S. D.; Moon, D.; Yoon, D.; Joo, K.; Kwak, J.; Chu, J. H.; Kim, S. Y.; Park, K.; Kim, Y. W.; Yoon, E.; Cheong, H.; Kwon, S. Y. Nanotechnology 2012, 43, 435603.

    42. [42]

      Kwak, J.; Chu, J. H.; Choi, J. K.; Park, S. D.; Go, H.; Kim, S. Y.; Park, K.; Kim, S. D.; Kim, Y. W.; Yoon, E.; Kodambaka, S.; Kwon, S. Y. Nat. Commun. 2012, 3, 645.  doi: 10.1038/ncomms1650

    43. [43]

      Gupta, P.; Rahman, A. A.; Hatui, N.; Gokhale, M. R.; Deshmukh, M. M.; Bhattacharya, A. J. Cryst. Growth 2013, 372, 105.  doi: 10.1016/j.jcrysgro.2013.03.020

    44. [44]

      Gupta, P.; Rahman, A. A.; Hatui, N.; Parmar, J. B.; Chalke, B. A.; Bapat, R. D.; Purandare, S. C.; Deshmukh, M. M.; Bhattacharya, A. Appl. Phys. Lett. 2013, 103, 181108.  doi: 10.1063/1.4827539

    45. [45]

      Araki, T.; Uchimura, S.; Sakaguchi, J.; Nanishi, Y.; Fujishima, T.; Hsu, A.; Kim, K. K.; Palacios, T.; Pesquera, A.; Centeno, A.; Zurutuza, A. Appl. Phys. Express 2014, 7, 071001.  doi: 10.7567/APEX.7.071001

    46. [46]

      Kim, J.; Bayram, C.; Park, H.; Cheng, C. W.; Dimitrakopoulos, C.; Ott, J. A.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K. Nat. Commun. 2014, 5, 4836.  doi: 10.1038/ncomms5836

    47. [47]

      Han, N.; Cuong, T. V.; Han, M.; Ryu, B. D.; Chandramohan, S.; Park, J. B.; Kang, J. H.; Park, Y. J.; Ko, K. B.; Kim, H. Y.; Kim, H. K.; Ryu, J. H.; Katharria, Y. S.; Choi, C. J.; Hong, C. H. Nat. Commun.2013, 4, 1452.  doi: 10.1038/ncomms2448

    48. [48]

      Yang, H.; Li, J. L.; Jia, R. F.; Yang, L. L.; Li, L. RSC Adv. 2016, 6, 43874.  doi: 10.1039/C6RA02440H

    49. [49]

      Zhang, L.; Li, X. L.; Shao, Y. L.; Yu, J. X.; Hao, X. P.; Yin, Z. M.; Dai, Y. B.; Tian, Y.; Huo, Q.; Shen, Y. N.; Hua, Z.; Zhang, B. G. ACS Appl. Mater. Interfaces 2015, 7, 4504.  doi: 10.1021/am5087775

    50. [50]

      Zeng, Q.; Chen, Z. L.; Zhao, Y.; Wei, T. B.; Chen, X.; Zhang, Y.; Yuan, G. D.; Li, J. M. Jpn. J. Appl. Phys. 2016, 55, 085501.  doi: 10.7567/JJAP.55.085501

    51. [51]

      Yoo, H.; Chung, K.; Choi, Y. S.; Kang, C. S.; Oh, K. H.; Kim, M.; Yi, G. C. Adv. Mater. 2012, 24, 515.  doi: 10.1002/adma.201103829

    52. [52]

      Chung, K.; Park, S. I.; Baek, H.; Chung, J. S.; Yi, G. C. Npg Asia Mater. 2012, 4, e24.

    53. [53]

      Baek, H.; Lee, C. H.; Chung, K.; Yi, G. C. Nano Lett. 2013, 13, 2782.  doi: 10.1021/nl401011x

    54. [54]

      Kim, Y. J.; Yoo, H.; Lee, C. H.; Park, J. B.; Baek, H.; Kim, M.; Yi, G. C. Adv. Mater. 2012, 24, 5565.  doi: 10.1002/adma.201201966

    55. [55]

      Nepal, N.; Wheeler, V. D.; Anderson, T. J.; Kub, F. J.; Masro, M. A.; Myers-Ward, R. L.; Qadri, S. B.; Freitas, J. A.; Hernandes, S. C.; Nyakiti, L. O.; Walton, S. G.; Gaskill, K.; Eddv, C. R. Appl. Phys. Express 2013, 6, 061003.  doi: 10.7567/APEX.6.061003

    56. [56]

      Chae, S. J.; Kim, Y. H.; Seo, T. H.; Duong, D. L.; Lee, S. M.; Park, M. H.; Kim, E. S.; Bae, J. J.; Lee, S. Y.; Jeong, H.; Suh, E. K.; Yang, C. W.; Jeong, M. S.; Lee, Y. H. RSC Adv. 2015, 5, 1343.  doi: 10.1039/C4RA12557F

    57. [57]

      Heilmann, M.; Sarau, G.; Gobelt, M.; Latzel, M.; Sadhujan, S.; Tessarek, C.; Christiansen, S. Cryst. Growth Des. 2015, 15, 2079.  doi: 10.1021/cg5015219

    58. [58]

      Seo, T. H.; Park, A. H.; Park, S.; Kim, Y. H.; Lee, G. H.; Kim, M. J.; Jeong, M. S.; Lee, Y. H.; Hahn, Y. B.; Suh, E. K. Sci. Rep. 2015, 5, 7747.  doi: 10.1038/srep07747

    59. [59]

      Puybaret, R.; Patriarche, G.; Jordan, M. B.; Sundaram, S.; El Gmili, Y.; Salvestrini, J. P.; Voss, P. L.; de Heer, W. A.; Berger, C.; Ougazzaden, A. Appl. Phys. Lett. 2015, 108, 103105.

    60. [60]

      Pacile, D.; Meyer, J. C.; Girit, C. O.; Zettl, A. Appl. Phys. Lett. 2008, 92, 133107.  doi: 10.1063/1.2903702

    61. [61]

      Wu, C. P.; Soomro, A. M.; Sun, F. P.; Wang, H. C.; Liu, C.; Yang, X. D.; Kang, J. Y.; Cai, D. J. Phys. Status Solidi B 2016, 253, 829.  doi: 10.1002/pssb.201552619

    62. [62]

      Kobayashi, Y.; Kumakura, K.; Akasaka, T.; Makimoto, T. Nature, 2012, 484, 223.  doi: 10.1038/nature10970

    63. [63]

      Wang, H.; Zhang, X.; Liu, H.; Yin, Z.; Meng, J.; Xia, J.; Meng, X. M.; Wu, J.; You, J. Adv. Mater. 2015, 27, 8109.  doi: 10.1002/adma.201504042

    64. [64]

      Ayari, T.; Sundaram, S.; Li, X.; El Gmili, Y.; Voss, P. L.; Sal-vestrini, J. P.; Ougazzaden, A. Appl. Phys. Lett. 2016, 108, 171106.  doi: 10.1063/1.4948260

    65. [65]

      Hiroki, M.; Kumakura, K.; Yamamoto, H. Jpn. J. Appl. Phys. 2016, 55, 05FH07.

    66. [66]

      Yamada, A.; Ho, K. P.; Maruyama, T.; Akimoto, K. Appl. Phys. A:Mater. Sci. & Process 1999, 69, 89.

    67. [67]

      Yamada, A.; Ho, K. P.; Akaogi, T.; Maruyama, T.; Akimoto, K. J. Cryst. Growth 1999, 201, 332.

    68. [68]

      Gupta, P.; Rahman, A. A.; Subramanian, S.; Gupta, S.; Tham-izhavel, A.; Orlova, T.; Rouvimov, S.; Protasenko, V.; Laskar, M. R.; Xing, H. G.; Jena, D.; Bhattacharya, A. Sci. Rep. 2016, 6, 23708.  doi: 10.1038/srep23708

    69. [69]

      Xu, G. C.; Lu, Z. X.; Zhang, Q.; Qiu, H. L.; Jiao, L. Y. Acta Chim. Sinica 2015, 73, 895(in Chinese).  doi: 10.6023/A15030203
       

  • 加载中
    1. [1]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    4. [4]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    11. [11]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    12. [12]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    17. [17]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

Metrics
  • PDF Downloads(32)
  • Abstract views(2148)
  • HTML views(312)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return