Citation: Wang Chaoqiang, Qiu Feilong, Deng Han, Zhang Xiaoyu, He Ping, Zhou Haoshen. Study on the Aqueous Hybrid Supercapacitor Based on Carbon-coated NaTi2(PO4)3 and Activated Carbon Electrode Materials[J]. Acta Chimica Sinica, ;2017, 75(2): 241-246. doi: 10.6023/A16100523 shu

Study on the Aqueous Hybrid Supercapacitor Based on Carbon-coated NaTi2(PO4)3 and Activated Carbon Electrode Materials

  • Corresponding author: Zhou Haoshen, pinghe@nju.edu.cn;hszhou@nju.edu.cn
  • Received Date: 4 October 2016
    Revised Date: 22 February 2017

    Fund Project: PAPD of Jiangsu Higher Education Institutions, and the Project on Union of Industry-Study-Research of Jiangsu Province BY2015069-01Project supported by the National Basic Research Program of China 2014CB932302 National Natural Science Foundation of China BK20160068, BK20140055National Natural Science Foundation of China 21673116, 21403107,21373111

Figures(4)

  • Supercapacitors have been regarded as one of the next-generation energy storage devices because of the high power density, excellent cycling performance, long lifespan and easy maintenance. However, its relatively low specific energy hinders its application in the future. Recently, Na-ion based aqueous hybrid supercapacitors have attracted worldwide attention due to its high energy density, environment friendly and low cost. In our work, the Na-ion aqueous hybrid supercapacitor is constructed with NaTi2(PO4)3/C and commercial activated carbon as electrode materials. NaTi2(PO4)3/C nanoparticles with the size of about 40 nm were synthesized by high-temperature solid state reaction method using the NaTi2(PO4)3/C precursor that was prepared through the solution method with Ti(C4H9O)4, NH4H2PO4, Na2CO3 as the raw materials, and citric acid as the carbon source. The electrochemical tests were performed using 1 mol·L-1 Na2SO4 solution as the electrolyte. The carbon-coated NaTi2(PO4)3 electrode delivers the discharge capacity of 122 mAh·g-1 and shows an excellent cycling stability with the retention of 60% of the initial capacity after 1000 cycles at a 10C rate. The supercapacitor was consisted of NaTi2(PO4)3/C anode, AC cathode and 1 mol·L-1 Na2SO4 electrolyte. And the weight ratio of active materials in cathode and anode was 2.2. Cyclic voltammetry, galvanostatic test were employed to study the electrochemical properties of the supercapacitor. The as-fabricated device was then cycled between 0.15~1.4 V with different current density. Our results show the power density of 121.15 W·kg-1 with specific energy of 18.71 Wh·kg-1 at the current density of 0.5 A·g-1. Moreover, the specific energy and power density goes to 14.13 Wh·kg-1 and 2.42 kW·kg-1 at a higher current density of 10 A·g-1. More importantly, the device showed an excellent cycling stability with the retention of 76% after 1000 cycles at a current density of 1 A·g-1. This research shows the designed hybrid supercapacitor has the potential to be used as auxiliary high-power energy storage device for the practical applications.
  • 加载中
    1. [1]

      Miller, J.-R.; Simon, P. Science 2008, 321, 651.

    2. [2]

      Bohlen, O.; Kowal, J.; Sauer, D.-U. J. Power Sources 2007, 172, 468.

    3. [3]

      Ashtiani, C.; Wright, R.; Hunt, G. J. Power Sources 2006, 154, 561. 

    4. [4]

      Simon, P.; Gogotsi. Y. Nat. Mater. 2008, 7, 845.

    5. [5]

      Zhang, Y.; Feng, H.; Wu, X.-B.; Wang, L.-Z.; Zhang, A.-Q.; Xia, T.-C.; Dong, H.-C.; Li, X.-F.; Zhang, L.-S. Int. J. Hydrogen Energ. 2009, 34, 4889.

    6. [6]

      Conway, B.-E. Electrochemical Supercapacitors, Kluwer Academic/Plunum, New York, 1999.

    7. [7]

      He, Y.-M.; Chen, W.-J.; Gao, C.-T.; Zhou, J.-Y.; Li, X.-D.; Xie, E.-Q. Nanoscale 2013, 5, 8799.

    8. [8]

      Akihiko, Y.; Ichiro, T.; Yasuhiro, T.; Atsushi, N. IEEE Transactions On Components, Hybrids, And Manufacturing Technology, 1987, 10, 1.

    9. [9]

      Honda, Y.; Haramoto, T.; Takeshige, M.; Shiozaki, H.; Kitamura, T.; Ishikawa, M. Electrochem. Solid-State Lett. 2007, 10, A106.

    10. [10]

      Miller, J.-R.; Outlaw, R.-A.; Holloway, B.-C. Science 2010, 329, 1637.

    11. [11]

    12. [12]

    13. [13]

      Burke, A. J. Power Sources 2000, 91, 37. 

    14. [14]

      Wen, L.-Y.; Mi, Y.; Wang, C.-L.; Fang, Y.-G.; Grote, F.-B.; Zhao, H.-P. Small 2014, 10, 3162.

    15. [15]

      Kim, I.-H.; Kim, K.-B. J. Electrochem. Soc. 2006, 153, A383.

    16. [16]

      Shi, Y.; Pan, L.-J.; Liu, B.-R.; Wang, Y.-Q.; Cui, Y.; Bao, Z.-N.; Yu, G.-H. J. Mater. Chem. A 2014, 2, 6086.

    17. [17]

      Cheng, L.; Liu, H.-J.; Zhang, J.-J.; Xiong, H.-M.; Xia, Y.-Y. J. Electrochem. Soc. 2006, 153, A1472.

    18. [18]

      Li, H.-Q.; Cheng, L.; Xia, Y.-Y. Electrochem. Solid-State Lett. 2005, 8, A433.

    19. [19]

      Wang, Y.-G.; Xia, Y.-Y. J. Electrochem. Soc. 2006, 153, A450.

    20. [20]

      Luo, J.-Y.; Xia, Y.-Y. J. Power Sources 2009, 186, 224. 

    21. [21]

      He, P.; Zhang, X.; Wang, Y.-G.; Cheng, L.; Xia, Y.-Y. J. Electrochem. Soc. 2008, 155, A144.

    22. [22]

      He, P.; Luo, J.-Y.; He, J.-X.; Xia, Y.-Y. J. Electrochem. Soc. 2009, 156, A209.

    23. [23]

      He, P.; Liu, J.-L.; Cui, W.-J.; Luo, J.-Y.; Xia, Y.-Y. Electrochim. Acta 2011, 56, 2351.

    24. [24]

      Slater, M.-D.; Kim, D.; Lee, E.; Johnson, C.-S. Adv. Funct. Mater. 2013, 23, 947.

    25. [25]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636.

    26. [26]

      Kim, S.-W.; Seo, D.-H.; Ma, X.-H.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710. 

    27. [27]

      Senthilkumar, B.; Ananya, G.; Ashok, P.; Ramaprabhu, S. Electrochim. Acta 2015, 169, 447.

    28. [28]

      Liu, X.; Zhang, N.; Ni, J.; Gao, L.-J. J. Solid State Electrochem. 2013, 17, 1939.

    29. [29]

      Aravindan, V.; Ling, W.-C.; Hartung, S.; Bucher, N.; Madhavi, S. Chem. Asian J. 2014, 9, 878. 

    30. [30]

      Luo, J.-Y.; Cui, W.-J.; He, P.; Xia, Y.-Y. Nat. Chem. 2010, 2, 760.

    31. [31]

      Li, Z.; Ravnsbæk, D.-B.; Xiang, K.; Chiang, Y.-M. Electrochem. Commun. 2014, 44, 12.

    32. [32]

      Luo, J.-Y.; Liu, J.-L.; He, P.; Xia, Y.-Y. Electrochim. Acta 2008, 53, 8128.

  • 加载中
    1. [1]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    4. [4]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    7. [7]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    8. [8]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    9. [9]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    10. [10]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    11. [11]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    12. [12]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    13. [13]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    14. [14]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    15. [15]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    16. [16]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    17. [17]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    19. [19]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(12)
  • Abstract views(1959)
  • HTML views(346)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return