Citation: Wang Lei, Zhao Dongdong, Liu Xu, Yu Peng, Fu Honggang. Hydrothermal for Synthesis of CoO Nanoparticles/Graphene Composite as Li-ion Battery Anodes[J]. Acta Chimica Sinica, ;2017, 75(2): 231-236. doi: 10.6023/A16090476 shu

Hydrothermal for Synthesis of CoO Nanoparticles/Graphene Composite as Li-ion Battery Anodes

  • Corresponding author: Fu Honggang, fuhg@vip.sina.com
  • Received Date: 6 September 2016
    Revised Date: 21 January 2017

    Fund Project: Harbin science and technology innovation talents research Foundation 2015RAQXJ057application technology research and development projects in Harbin 2013AE4BW051Project supported by the National Natural Science Foundation of China 21371053, 21401048the international science & technology cooperation program of China 2014DFR41110

Figures(6)

  • Nowadays, the clean energy is of special concern researches owing to the unavoidable environmental pollutions. To satisfy the demand of sustainable development strategy, it is necessary to develop high-efficient and portable energy storage and conversion devices. Lithium ion batteries (LIBs) are considered as most promising electrochemical energy storage system in this era and are anticipated to power the mentioned applications. Herein, a facile and effective route has been developed for synthesis of CoO/reduced graphite oxide (RGO) composites as LIB anodes. In the synthesis, the GO prepared by the modified Hummers' method was dissolved into deionized water, and then mixed with Co(NO3)2 solution. Subsequently, the obtained homogeneous solution was transferred into 100 mL Teflon-lined stainless-steel autoclave. The sealed autoclave was putted into an oven at 160℃ for 6 h. After cooled down to room temperature, the precursor of depositions were filtered, washed with deionized water and dried at 80℃. Finally, the precursor was thermal treated at 500℃ for 2 h in a tube furnace under nitrogen ambient to obtain the final product of CoO/RGO composites. The synthetic composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns proved that the composites were composed of CoO and graphene. SEM images indicated the CoO nanoparticles grown on the graphene nanosheets uniformly. The CoO nanoparticles loaded on the surface of graphene nanosheets could prevent the aggregation of graphene. Meanwhile, the graphene nanosheets could combine with each other to form a large 3D electron conductive network, which can promote the electrical conductivity of the composite. The LIB was assembled in glove-box, in which the composite electrode and metal lithium plate were used as the anode and the cathode, respectively. The electrochemical test results imply that the initial discharge specific capacity could be up to 1312.6 mAh·g-1 at a current density of 100 mA·g-1. Notably, the discharge specific capacity is still about 557.4 mAh·g-1 after 300 cycles at a high current density of 10000 mA·g-1. It is demonstrated that the composite exhibits high specific capacity, excellent rate capability and well cyclic stability. The 3D network could be used as a stable framework to accommodate the volume change of active material during Li+ insertion/extraction, which play important role for the superior electrochemical performance.
  • 加载中
    1. [1]

      Nishi, Y. Chem. Rec. 2001, 1, 406.

    2. [2]

      Choi, N.-S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51, 9994. 

    3. [3]

      Cabana, J.; Monconduit, L.; Larcher, D.; Rosa Palacin, M. Adv. Mater. 2010, 22, E170.

    4. [4]

      Lu, Y.; Wen, Z.; Rui, K.; Wu, X.; Cui, Y. J. Power Sources 2013, 244, 306. 

    5. [5]

      Li, C.; Yin, C.; Mu, X.; Maier, J. Chem. Mater. 2013, 25, 962.

    6. [6]

      Rui, K.; Wen, Z.; Lu, Y.; Shen, C.; Jin, J. ACS Appl. Mater. Interfaces 2016, 8, 1819. 

    7. [7]

      Li, H.; Liang, M.; Sun, W.; Wang, Y. Adv. Funct. Mater. 2016, 26, 1098. 

    8. [8]

      Wang, X.; Liu, B.; Hou, X.; Wang, Q.; Li, W.; Chen, D.; Shen, G. Nano Res. 2014, 7, 1073.

    9. [9]

      Arun, N.; Jain, A.; Aravindan, V.; Jayaraman, S.; Ling, W. C.; Srinivasan, M. P.; Madhavi, S. Nano Energy 2015, 12, 69. 

    10. [10]

      Arun, N.; Aravindan, V.; Ling, W. C.; Madhavi, S. J. Power Sources 2015, 280, 240. 

    11. [11]

      Han, J.-T.; Goodenough, J. B. Chem. Mater. 2011, 23, 3404. 

    12. [12]

      Lu, X.; Jian, Z.; Fang, Z.; Gu, L.; Hu, Y.-S.; Chen, W.; Wang, Z.; Chen, L. Energy Environ. Sci. 2011, 4, 2638.

    13. [13]

      Guo, B.; Yu, X.; Sun, X.-G.; Chi, M.; Qiao, Z.-A.; Liu, J.; Hu, Y.-S.; Yang, X.-Q.; Goodenough, J. B.; Dai, S. Energy Environ. Sci. 2014, 7, 2220.

    14. [14]

      Tang, K.; Mu, X.; PvanAken, A.; Yu, Y.; Maier, J. Adv. Energy Mater. 2013, 3, 49. 

    15. [15]

      Han, J.-T.; Huang, Y.-H.; Goodenough, J. B. Chem. Mater. 2011, 23, 2027. 

    16. [16]

      Jayaraman, S.; Aravindan, V.; Suresh Kumar, P.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. ACS Appl. Mater. Interfaces 2014, 6, 8660. 

    17. [17]

      Fei, L.; Xu, Y.; Wu, X.; Li, Y.; Xie, P.; Deng, S.; Smirnov, S.; Luo, H. Nanoscale 2013, 5, 11102.

    18. [18]

      Jo, C.; Kim, Y.; Hwang, J.; Shim, J.; Chun, J.; Lee, J. Chem. Mater. 2014, 26, 3508.

    19. [19]

      Aravindan, V.; Sundaramurthy, J.; Jain, A.; Kumar, P. S.; Ling, W. C.; Ramakrishna, S.; Srinivasan, M. P.; Madhavi, S. ChemSusChem 2014, 7, 1858. 

    20. [20]

      Cheng, Q.; Liang, J.; Zhu, Y.; Si, L.; Guo, C.; Qian, Y. J. Mater. Chem. A 2014, 2, 17258. 

    21. [21]

      Xie, H.; Park, K.-S.; Song, J.; Goodenough, J. B. Electrochem. Commun. 2012, 19, 135. 

    22. [22]

      Cussen, E. J.; Yi, T. W. S. J. Solid State Chem. 2007, 180, 1832. 

    23. [23]

      Satish, R.; Aravindan, V.; Ling, W. C.; Goodenough, J. B.; Madhavi, S. Adv. Energy. Mater. 2014, 4, 1301715. 

    24. [24]

       

    25. [25]

    26. [26]

    27. [27]

    28. [28]

      Aravindan, V.; Ling, W. C.; Hartung, S.; Bucher, N.; Madhavi, S. Chem. Asian J. 2014, 9, 878. 

    29. [29]

      Luo, J.-Y.; Cui, W.-J.; He, P.; Xia, Y.-Y. Nat. Chem. 2010, 2, 760.

    30. [30]

      Arun, N.; Aravindan, V.; Ling, W. C.; Madhavi, S. J. Alloys Compd. 2014, 603, 48. 

    31. [31]

      Gong, Z.; Yang, Y. Energy Environ. Sci. 2011, 4, 3223.

    32. [32]

      Masquelier, C.; Croguennec, L. Chem. Rev. 2013, 113, 6552.

    33. [33]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2009, 22, 587.

    34. [34]

      Son, J. N.; Kim, S. H.; Kim, M. C.; Kim, G. J.; Aravindan, V.; Lee, Y. G.; Lee, Y. S. Electrochim. Acta 2013, 97, 210. 

    35. [35]

      Son, J. N.; Kim, S. H.; Kim, M. C.; Kim, K. J.; Aravindan, V.; Cho, W. I.; Lee, Y. S. J Appl. Electrochem. 2013, 4, 583.

    36. [36]

      Cho, A. R.; Son, J. N.; Aravindan, V.; Kim, H.; Kang, K. S.; Yoon, W. S.; Kim, W. S.; Lee, Y. S. J. Mater. Chem. 2012, 22, 6556. 

    37. [37]

      Son, J. N.; Kim, G. J.; Kim, M. C.; Kim, S. H.; Aravindan, V.; Lee, Y. G.; Lee, Y. S. J. Electrochem. Soc. 2013, 160, A87.

    38. [38]

      Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Nano Energy 2012, 1, 107.

    39. [39]

      Zhu, J.; Zhang, G. H.; Yu, X. Z.; Li, Q. H.; Lu, B.; Xu, Z. Nano Energy 2014, 3, 80. 

    40. [40]

      Shen, B.; Zhai, W. T.; Zheng, W. Adv. Funct. Mater. 2014, 24, 4542. 

    41. [41]

      Shu, K. W.; Wang, C. Y.; Wang, M.; Zhao, C.; Wallace, G. G. J. Mater. Chem. A 2014, 2, 1325. 

    42. [42]

      Xu, W.; Xie, Z.; Cui, X.; Zhao, K.; Zhang, L.; Dietrich, G.; Dooley, K. M.; Wang, Y. ACS Appl. Mater. Interfaces 2015, 7, 22533. 

    43. [43]

      Park, G. D.; Kang, Y. C. Chem. Eur. J. 2015, 21, 9179. 

    44. [44]

      Mo, R.; Lei, Z.; Sun, K.; Rooney, D. Adv. Mater. 2014, 26, 2084.

    45. [45]

      Guan, X.; Nai, J.; Zhang, Y.; Wang, P.; Yang, J.; Zheng, L.; Zhang, J.; Guo, L. Chem. Mater. 2014, 26, 5958.

    46. [46]

      Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren, W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Adv. Funct. Mater. 2014, 24, 3815. 

    47. [47]

      Yin, L.; Zhang, Z.; Li, Z.; Hao, F.; Li, Q.; Wang, C.; Fan, R.; Qi, Y. Adv. Funct. Mater. 2014, 24, 4176. 

    48. [48]

      Zhou, G.; Wang, D.; Li, F.; Zhang, L.; Li, N.; Wu, Z.; Wen, L.; Lu, G. Q.; Cheng, H. Chem. Mater. 2010, 22, 5306.

    49. [49]

      Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. Nat. Mater. 2006, 5, 567. 

    50. [50]

      Zhou, J.; Song, H.; Ma, L.; Chen, X. RSC Adv. 2011, 1, 782.

    51. [51]

      Zhan, L.; Wang, S.; Ding, L.-X.; Li, Z.; Wang, H. J. Mater. Chem. A 2015, 3, 19711. 

    52. [52]

      Chen, M.; Xia, X.; Qi, M.; Yuan, J.; Yin, J.; Chen, Q. Mater. Res. Bull. 2016, 73, 125. 

    53. [53]

      Jena, A.; Penki, T. R.; Munichandraiah, N.; Shivashankar, S. A. J. Electroanal. Chem. 2016, 761, 21. 

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    4. [4]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    5. [5]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    7. [7]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    8. [8]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    15. [15]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

Metrics
  • PDF Downloads(19)
  • Abstract views(1834)
  • HTML views(336)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return