Citation: Liu Lilu, Qi Xingguo, Hu Yongsheng, Chen Liquan, Huang Xuejie. Novel Cu Based Oxides with Tunnel Structure as Cathode for Sodium-ion Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 218-224. doi: 10.6023/A16080424 shu

Novel Cu Based Oxides with Tunnel Structure as Cathode for Sodium-ion Batteries

  • Corresponding author: Hu Yongsheng, yshu@ihpy.ac.cn
  • Received Date: 21 August 2016
    Revised Date: 10 November 2016

    Fund Project: Project supported by the National Natural Science Foundation of China 51222210 and 11234013

Figures(8)

  • Lithium-ion batteries have dominated the electronic and portable device market, since its commercialization in 1990s. However, the cost gets boosted because of the shortage and uneven distribution of lithium. Due to the advantage of cost compared with lithium-ion batteries, sodium-ion batteries are considered as the potential candidates for large scale energy storage systems. Cu based tunnel type materials were first synthesized through simple solid state reaction, with Na2CO3, CuO, Fe2O3, MnO2 and TiO2 as starting materials. These raw materials were weighed and grounded in an agate mortar, followed by heat treatment at 950℃ for 24 h in air. The obtained samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance test. The XRD results demonstrate the tunnel structure was formed with space group pbam (the same with Na0.44MnO2) for each compound. SEM observation manifests that the distribution of particle size is from several hundred of nanometers to several micrometers. The specifically designed compound with Mn substitution (Na0.66Cu0.17Mn0.33Ti0.50O2) can deliver 90 mAh/g cycled between 1.5~4.1 V. Good cycling stability was verified for this compound, of which 90% of its capacity maintained after 50 cycles at 0.1C rate. Moreover, the rate capability is also good and 74% of its capacity remained when cycled at 1C rate. Charge transfer mechanism was studied by X-ray photoelectron spectroscopy (XPS), and the electroactivity of Cu3+/Cu2+ in this tunnel structure was proved. In addition, we also performed in-situ XRD in order to examine the structure change during sodium extraction and intercalation. Only solid solution reaction took place during the test with shift of peaks or change of the peaks' intensity, however without the appearance of new peaks or disappearance of existed peaks. Here we report, for the first time, the electroactivity of Cu3+/Cu2+ in tunnel type structure. Our results provide new insights in designing tunnel type compound as cathode material for sodium-ion batteries.
  • 加载中
    1. [1]

    2. [2]

      Hua, W.; Wang, Y.; Zhong, Y.; Wang, G.; Zhong, B.; Fang, B.; Guo, X.; Liao, S.; Wang, H. Chin. J. Chem. 2015, 33, 261.

    3. [3]

      Ou, J.; Yang, L.; Zhang, Y.; Chen, L.; Guo, Y.; Xiao, D. Chin. J. Chem. 2015, 33, 1293.

    4. [4]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. 

    5. [5]

    6. [6]

      Pan, H. L.; Hu, Y. S.; Chen, L. Q. Energy Environ. Sci. 2013, 6, 2338. 

    7. [7]

    8. [8]

      Xiang, X.; Zhang, K.; Chen, J. Adv. Mater. 2015, 27, 5343.

    9. [9]

      Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. Energy Environ. Sci. 2014, 8, 195.

    10. [10]

      Hamani, D.; Ati, M.; Tarascon, J.-M.; Rozier, P. Electrochem. Commun. 2011, 13, 938.

    11. [11]

      Kubota, K.; Ikeuchi, I.; Nakayama, T.; Takei, C.; Yabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. J. Phys. Chem. C 2015, 119,166. 

    12. [12]

      Li, Y.; Feng, X.; Cui, S.; Shi, Q.; Mi, L.; Chen, W. CrystEngComm 2016, 18, 3136.

    13. [13]

      Lee, E.; Brown, D. E.; Alp, E. E.; Ren, Y.; Lu, J.; Woo, J.-J.; Johnson, C. S. Chem. Mater. 2015, 27, 6755. 

    14. [14]

      Reddy, B. V. R.; Ravikumar, R.; Nithya, C.; Gopukumar, S. J. Mater. Chem. A 2015, 3, 18059. 

    15. [15]

      Han, M.; Gonzalo, E.; Casas-Cabanas, M.; Rojo, T. J. Power Sources 2014, 258, 266. 

    16. [16]

      Liu, Y.; Fang, X.; Zhang, A.; Shen, C.; Liu, Q.; Enaya, H. A.; Zhou, C. Nano Energy 2016, 27, 27. 

    17. [17]

      Zhu, Y.-E.; Qi, X. G.; Chen, X.; Zhou, X.; Zhang, X.; Wei, J.; Hu, Y.; Zhou, Z. J. Mater. Chem. A 2016, 4, 11103. 

    18. [18]

      Qi, X.; Wang, Y.; Jiang, L.; Mu, L.; Zhao, C.; Liu, L.; Hu, Y.-S.; Chen, L.; Huang, X. Part. Part. Syst. Charact. 2016, 33, 538. 

    19. [19]

      Guo, H.; Wang, Y.; Han, W.; Yu, Z.; Qi, X.; Sun, K.; Hu, Y.-S.; Liu, Y.; Chen, D.; Chen, L. Electrochim. Acta 2015, 158, 258.

    20. [20]

      Delmas, C.; Fouassier, C.; Hagenmuller, P. Physica B & C 1980, 99, 81.

    21. [21]

      Doeff, M. M.; Richardson, T. J.; Hollingsworth, J.; Yuan, C. W.; Gonzales, M. J. Power Sources 2002, 112, 294. 

    22. [22]

      Doeff, M. M.; Peng, M. Y.; Ma, Y.; De Jonghe, L. C. J. Electrochem. Soc. 1994, 141, L145.

    23. [23]

      Parant, J.-P.; Olazcuag, R.; Devalett, M.; Fouassie, C.; Hagenmuller, P. J. Solid State Chem. 1971, 3, 1. 

    24. [24]

      Whitacre, J. F.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12, 463.

    25. [25]

      Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y. S.; Yang, W.; Kang, K.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2015, 6, 6401.

    26. [26]

      Wang, Y.; Mu, L.; Liu, J.; Yang, Z.; Yu, X.; Gu, L.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Adv. Energy Mater. 2015, 5, 1501005. 

    27. [27]

      Xu, S.; Wang, Y.; Ben, L.; Lyu, Y.; Song, N.; Yang, Z.; Li, Y.; Mu, L.; Yang, H.-T.; Gu, L.; Hu, Y.-S.; Li, H.; Cheng, Z.-H.; Chen, L. Huang, X. Adv. Energy Mater. 2015, 5, 1501156. 

    28. [28]

      Wang, J.; Qiu, B.; He, X.; Risthaus, T.; Liu, H.; Stan, M. C.; Schulze, S.; Xia, Y.; Liu, Z.; Winter, M.; Li, J. Chem. Mater. 2015, 27, 4374.

    29. [29]

      Zhan, P.; Wang, S.; Yuan, Y.; Jiao, K.; Jiao, S. J. Electrochem. Soc. 2015, 162, A1028.

    30. [30]

      Jiang, X.; Liu, S.; Xu, H.; Chen, L.; Yang, J.; Qian, Y. Chem. Commun. 2015, 51, 8480.

    31. [31]

      Chu, Q.; Wang, X.; Li, Q.; Liu, X. Acta Crystallogr. Sect. C 2011, 67, i10.

    32. [32]

      Kim, H.; Kim, D. J.; Seo, D.-H.; Yeom, M. S.; Kang, K.; Kim, D. K. Jung, Y. Chem. Mater. 2012, 24, 1205.

    33. [33]

      Xu, S. Y.; Wu, X. Y.; Li, Y. M.; Hu, Y. S.; Chen, L. Q. Chin. Phys. B 2014, 23, 118202. 

    34. [34]

      Mu, L.; Xu, S.; Li, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. Adv. Mater. 2015, 27, 6928.

    35. [35]

      Mu, L.; Hu, Y.-S.; Chen, L. Chin. Phys. B 2015, 24, 038202.

    36. [36]

      Li, Y.; Yang, Z.; Xu, S.; Mu, L.; Gu, L.; Hu, Y.-S.; Li, H.; Chen, L. Adv. Sci. 2015, 2, 1500031.

    37. [37]

      Li, Y.; Hu, Y.-S.; Qi, X.; Rong, X.; Li, H.; Huang, X.; Chen, L. Energy Storage Mater. 2016, 5, 191.

    38. [38]

      Sharma, N.; Gonzalo, E.; Pramudita, J. C.; Han, M. H.; Brand, H.; Hart, J. N.; Peng, W. K.; Guo, Z. P.; Rojo, T. Adv. Funct. Mater. 2005, 25, 4994.

  • 加载中
    1. [1]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    2. [2]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    3. [3]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    6. [6]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    7. [7]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    14. [14]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    17. [17]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(21)
  • Abstract views(1673)
  • HTML views(343)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return