Citation:
Ren Tong, Zhuang Quanchao, Hao Yuwan, Cui Yongli. Influence of Electrochemical Performance of Lithium Ion Batteries with the Adding of LiF and LiCl[J]. Acta Chimica Sinica,
;2016, 74(10): 833-838.
doi:
10.6023/A16080394
-
In the past few decades, lithium hexafluorophosphate (LiPF6) is the most widely employed ionic component in organic electrolyte solutions for commercial lithium ion battery, which is manufactured using PCl5, LiF and HF as raw materials via the HF solvent method in the large scale production, and then it commonly contains LiF and LiCl impurities besides water and acid. However, the influence of LiF and LiCl on the performance of lithium ion battery is still not clear. Thus, in this paper, the influence of LiF and LiCl on the electrochemical performance of graphite electrode was investigated using charge-discharge test and cyclic voltammetry (CV) combining with scanning electron microscope (SEM) and electrochemical impedance spectrum (EIS). Charge-discharge test results showed that the electrochemical performance of graphite electrode such as reversible capacity and cycling stability were significantly improved in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF. The initial charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF is 331.0 mAh/g, which is higher than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte (307.9 mAh/g). After 65 charge-discharge cycles, the charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF is 340.1 mAh/g, which is also higher than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte (297.0 mAh/g). However, although the first charging capacity of graphite electrode was enhanced in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl, the charge-discharge cycling stability was serious deteriorated. The initial charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl is 334.2 mAh/g, yet after 65 charge-discharge cycles, the charge capacity of graphite electrode in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl is 251.2 mAh/g. CV results showed that the influence of LiF and LiCl on the decomposition process of EC in electrolyte is small. SEM and EIS results stated that the SEI film which was formed on the graphite electrode is thinner and has a smaller resistance in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiF than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte. Thus the reversible cycle capacity of graphite electrode was increased and its cycle stability was improved. Nevertheless the SEI film which was formed on the graphite electrode is thicker and its resistance is higher in 1 mol/L LiPF6-EC:DEC:DMC electrolyte with the saturation of LiCl than that in 1 mol/L LiPF6-EC:DEC:DMC electrolyte, which leads to the deterioration of electrochemical performance of graphite electrode.
-
Keywords:
- lithium ion battery,
- graphite electrode,
- LiPF6,
- LiF,
- LiCl
-
-
-
[1]
[1] Xu, K. Chem. Rev. 2004, 104, 4303.
-
[2]
[2] Zhuang, Q.-C.; Wu, S.; Liu, W.-Y.; Lu, Z.-D. Chin. Batt. Ind. 2005, 10, 169(in Chinese). (庄全超, 武山, 刘文元, 陆兆达, 电池工业, 2005, 10, 169.)
-
[3]
[3] Li, J.; Tian, L.-L.; Zhao, F.-L.; Zhuang, Q.-C. Appl. Chem. Ind. 2011, 40, 524(in Chinese). (李佳, 田雷雷, 赵封林, 庄全超, 应用化工, 2011, 40, 524.)
-
[4]
[4] Aurbach, D.; Markovsky, B.; Shechter, A.; Ein-Eli, Y. J. Electrochem. Soc. 1996, 143, 3809.
-
[5]
[5] Aurbach, D.; Weissman, I.; Zaban, A.; Dan, P. Electrochim. Acta 1999, 45, 1135.
-
[6]
[6] Aurbach, D.; Schechter, A. Electrochim. Acta 2001, 46, 2395.
-
[7]
[7] Naji, A.; Ghanbaja, J.; Humbert, B.; Willmann, P.; Billaud, D. J. Power Sources 1996, 63, 33.
-
[8]
[8] Holzapfel, M.; Martinent, A.; Alloin, F.; Le Gorrec, B.; Yazami, R.; Montella, C. J. Electroanal. Chem. 2003, 546, 41.
-
[9]
[9] Du, L.-L.; Zhuang, Q.-C.; Wei, T.; Shi, Y.-L.; Qiang, Y.-H.; Sun, S.-G. Acta Chim. Sinica 2011, 69, 2641(in Chinese). (杜莉莉, 庄全超, 魏涛, 史月丽, 强颖怀, 孙世刚, 化学学报, 2011, 69, 2641.)
-
[10]
[10] Wei, T.; Zhuang, Q.-C.; Wu, C.; Cui, Y.-L.; Fang, L.; Sun, S.-G. Acta Chim. Sinica 2010, 68, 1481(in Chinese). (魏涛, 庄全超, 吴超, 崔永丽, 方亮, 孙世刚, 化学学报, 2010, 68, 1481.)
-
[11]
[11] Chang, Y.-C.; Sohn, H.-J. J. Electrochem. Soc. 2000, 147, 50.
-
[12]
[12] Zhuang, Q.-C.; Chen, Z.-F.; Dong, Q.-F.; Jiang, Y.-X.; Zhou, Z.-Y.; Sun, S.-G. Chem. J. Chin. Univ. 2005, 26, 2073(in Chinese). (庄全超, 陈作锋, 董全峰, 姜艳霞, 周志有, 孙世刚, 高等学校化学学报, 2005, 26, 2073.)
-
[13]
[13] Levi, M.-D.; Aurbach, D. J. Phys. Chem. B 1997, 101, 4630.
-
[14]
[14] Levi, M.-D.; Aurbach, D. J. Power Sources 2005, 146, 727.
-
[15]
[15] Deng, X.; Xie, K.; Li, L.; Zhou, W.; Sunarso, J.; Shao, Z. Carbon 2016, 107, 67.
-
[16]
[16] Deng, X.; Zhao, B.; Zhu, L.; Shao, Z.-P. Carbon 2015, 93, 48.
-
[17]
[17] Zhang, S.-S.; Xu, K.; Jow, T.-R. Electrochim. Acta 2006, 51, 1636.
-
[18]
[18] Zhang, S.; Shi, P. Electrochim. Acta 2004, 49, 1475.
-
[19]
[19] Xu, S.-D.; Zhuang, Q.-C.; Tian, L.-L.; Qin, Y.-P.; Fang, L.; Sun, S.-G. J. Phys. Chem. C 2011, 115, 9210.
-
[20]
[20] Zhuang, Q.-C.; Wei, T.; Wei, G.-Z.; Dong, Q.-F.; Sun, S.-G. Acta Chim. Sinica 2009, 67, 2184(in Chinese). (庄全超, 魏涛, 魏国祯, 董全峰, 孙世刚, 化学学报, 2009, 67, 2184.)
-
[21]
[21] Wang, C.-S.; Kakwan, I.; John Appleby, A.; Little, F.-E. J. Electroanal. Chem. 2000, 489, 55.
-
[22]
[22] Wang, C.-S.; Appleby, A.-J.; Little, F.-E. J. Electroanal. Chem. 2001, 497, 33.
-
[1]
-
-
-
[1]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[2]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[3]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[4]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[5]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[6]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[7]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[8]
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
-
[9]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
-
[12]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[13]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[14]
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
-
[15]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[16]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[17]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[18]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042
-
[19]
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
-
[20]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(728)
- HTML views(106)