Citation: Li Qi, Xu Han, Tong Yexiang, Li Gaoren. Pt Tube-in-Tube Arrays as HighPerformance Electrocatalysts for Direct Methanol Fuel Cell[J]. Acta Chimica Sinica, ;2017, 75(2): 193-198. doi: 10.6023/A16070337 shu

Pt Tube-in-Tube Arrays as HighPerformance Electrocatalysts for Direct Methanol Fuel Cell

  • Corresponding author: Tong Yexiang, sysutong@sina.cn Li Gaoren, ligaoren@mail.sysu.edu.cn
  • Received Date: 13 July 2016

    Fund Project: and Natural Science Foundation of Guangdong Province S2013020012833Project supported by the National Natural Science Foundation of China 51173212

Figures(11)

  • The Pt tube-in-tube arrays (TTAs) were designed and synthesized by ZnO template-assisted electrodeposition. As a robust integrated 3D electrocatalyst with high utilization rate and fast transport of electroactive species, the Pt TTAs exhibit a high electrochemically active surface area (ECSA) of 64.9 m2/gPt. Compared with Pt NTAs and commercial Pt/C catalyst, the Pt TTAs exhibit much improved electrocatalytic activity and durability for methanol oxidation. In addition, the Pt TTAs as electrocatalysts exhibit superior CO poisoning tolerance. This work shows the significant progress of Pt-based electrocatalysts with high-performance for direct methanol fuel cells.
  • 加载中
    1. [1]

      Jin, R.; Yang, Y.; Xing, Y.; Chen, L.; Song, S.; Jin, R. ACS Nano 2014, 8, 3664.

    2. [2]

      Zhang, G.; Xia, B. Y.; Xiao, C.; Yu, L.; Wang, X.; Xie, Y.; Lou, X. W. Angew. Chem. Int. Ed. 2013, 52, 8643. 

    3. [3]

      Lou, X. W.; Archer, L. A.; Yang, Z. Adv. Mater. 2008, 20, 3987.

    4. [4]

      Wang, Z.; Zhou, L.; Lou, X. W. Adv. Mater. 2012, 24, 1903. 

    5. [5]

      Hu, J.; Chen, M.; Fang, X.; Wu, L. Chem. Soc. Rev. 2011, 40, 5472. 

    6. [6]

      Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X.; Lu, G. Q. Chem. Commun. 2011, 47, 12578. 

    7. [7]

      Lai, X.; Halpert, J. E.; Wang, D. Energy Environ. Sci. 2012, 5, 5604.

    8. [8]

      Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 13934. 

    9. [9]

      Wang, Z.; Luan, D.; Boey, F. Y. C.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 4738. 

    10. [10]

      Wang, L.; Tang, F.; Ozawa, K.; Chen, Z.-G.; Mukherj, A.; Zhu, Y.; Zou, J.; Cheng, H.-M.; Lu, G. Q. Angew. Chem. Int. Ed. 2009, 48, 7048. 

    11. [11]

      Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 17146. 

    12. [12]

      Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gosele, U. Nat. Mater. 2006, 5, 627.

    13. [13]

      Lai, X.; Li, J.; Korgel, B. A.; Dong, Z.; Li, Z.; Su, F.; Du, J.; Wang, D. Angew. Chem. Int. Ed. 2011, 50, 2738. 

    14. [14]

      Cho, W.; Lee, Y. H.; Lee, H. J.; Oh, M. Adv. Mater. 2011, 23, 1720.

    15. [15]

      Yang, M.; Ma, J.; Zhang, C.; Yang, Z.; Lu, Y. Angew. Chem. Int. Ed. 2005, 44, 6727. 

    16. [16]

      Roy, P.; Berger, S.; Schmuki, P. Angew. Chem. Int. Ed. 2011, 50, 2904. 

    17. [17]

      Deng, M.-J.; Chang, J.-K.; Wang, C.-C.; Chen, K.-W.; Lin, C.-M.; Tang, M.-T.; Chen, J.-M.; Lu, K.-T. Energy Environ. Sci. 2011, 4, 3942.

    18. [18]

      Kang, T.-S.; Smith, A. P.; Taylor, B. E.; Durstock, M. F. Nano Lett. 2009, 9, 601. 

    19. [19]

      Park, M.-H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M.; Cho, J. Angew. Chem. Int. Ed. 2011, 50, 9647. 

    20. [20]

      Lee, S. B.; Mitchell, D. T.; Trofin, L.; Nevanen, T. K.; Soderlund, H.; Martin, C. R. Science 2002, 296, 2198. 

    21. [21]

      Zhu, Z. P.; Su, D. S.; Weinberg, G.; Schlogl, R. Nano Lett. 2004, 4, 2255.

    22. [22]

      Albu, S.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G.; Macak, J.; Schmuki, P. Adv. Mater. 2008, 20, 4135.

    23. [23]

      Peng, Q.; Sun, X. Y.; Spagnola, J. C.; Saquing, C.; Khan, S. A.; Spontak, R. J.; Parsons, G. N. ACS Nano 2009, 3, 546. 

    24. [24]

      Ben Ishai, M.; Patolsky, F. Angew. Chem. Int. Ed. 2009, 48, 8699. 

    25. [25]

      Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X. T.; Wang, H. Chem. Rev. 2015, 115, 3433.

    26. [26]

      Rana, M.; Chhetri, M.; Loukya, B.; Patil, P. K.; Datta, R.; Gautam, U. K. ACS Appl. Mater. Interfaces 2015, 7, 4998. 

    27. [27]

      Ruan, M.; Sun, X.; Zhang, Y.; Xu, W. ACS Catal. 2015, 5, 233.

    28. [28]

      Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C.-K. ACS Nano 2014, 8, 7239.

    29. [29]

      Zhang, C.; Xu, L.; Shan, N.; Sun, T.; Chen, J.; Yan, Y. ACS Catal. 2014, 4, 1926.

    30. [30]

      Xie, S.; Choi, S.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J.; Kim, M. J.; Xie, Z.; Mavrikakis, M.; Xia, Y. Nano Lett. 2014, 14, 3570.

    31. [31]

      Zhang, Y.; Hsieh, Y.-C.; Volkov, V.; Su, D.; An, W.; Si, R.; Zhu, Y.; Liu, P.; Wang, J. X.; Adzic, R. R. ACS Catal. 2014, 4, 738. 

    32. [32]

      Qiu, H.-J.; Shen, X.; Wang, J. Q.; Hirata, A.; Fujita, T.; Wang, Y.; Chen, M. W. ACS Catal. 2015, 5, 3779. 

    33. [33]

      Zhang, L.; Iyyamperumal, R.; Yancey, D. F.; Crooks, R. M.; Henkelman, G. ACS Nano 2013, 7, 9168. 

    34. [34]

      Oezaslan, M.; Hasché, F.; Strasser, P. J. Phys. Chem. Lett. 2013, 4, 3273. 

    35. [35]

      Li, H.; Wu, H.; Zhai, Y.; Xu, X.; Jin, Y. ACS Catal. 2013, 3, 2045.

    36. [36]

      Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Acc. Chem. Res. 2013, 46, 1867. 

    37. [37]

      Kang, Y.; Li, M.; Cai, Y.; Cargnello, M.; Diaz, R. E.; Gordon, T. R.; Wieder, N. L.; Adzic, R. R.; Gorte, R. J.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 2741. 

    38. [38]

      Liu, Y.; Mustain, W. E. J. Am. Chem. Soc. 2013, 135, 530. 

    39. [39]

      Kang, Y.; Ye, X.; Chen, J.; Cai, Y.; Diaz, R. E.; Adzic, R. R.; Stach, E. A.; Murray, C. B. J. Am. Chem. Soc. 2013, 135, 42. 

    40. [40]

      Hwang, S. J.; Kim, S.-K.; Lee, J.-G.; Lee, S.-C.; Jang, J. H.; Kim, P.; Lim, T.-H.; Sung, Y.-E.; Yoo, S. J. J. Am. Chem. Soc. 2012, 134, 19508. 

    41. [41]

      Zhou, W.-P.; An, W.; Su, D.; Palomino, R.; Liu, P.; White, M. G.; Adzic, R. R. J. Phys. Chem. Lett. 2012, 3, 3286. 

    42. [42]

      Yang, J.; Yang, J.; Ying, J. Y. ACS Nano 2012, 6, 9373. 

    43. [43]

      Yu, W.; Porosoff, M. D.; Chen, J. G. Chem. Rev. 2012, 112, 5780. 

    44. [44]

      Tan, T. L.; Wang, L.-L.; Johnson, D. D.; Bai, K. Nano Lett. 2012, 12, 4875. 

    45. [45]

      Li, Y.; Li, Y.; Zhu, E.; McLouth, T.; Chiu, C.-Y.; Huang, X.; Huang, Y. J. Am. Chem. Soc. 2012, 134, 12326. 

    46. [46]

      Kang, Y.; Pyo, J. B.; Ye, X.; Gordon, T. R.; Murray, C. B. ACS Nano 2012, 6, 5642. 

    47. [47]

      Liu, H.-X.; Tian, N.; Brandon, M. P.; Zhou, Z.-Y.; Lin, J.-L.; Hardacre, C.; Lin, W.-F.; Sun, S.-G. ACS Catal. 2012, 2, 708.

    48. [48]

      Kang, Y.; Qi, L.; Li, M.; Diaz, R. E.; Su, D.; Adzic, R. R.; Stach, E.; Li, J.; Murray, C. B. ACS Nano 2012, 6, 2818. 

    49. [49]

      Hong, J. W.; Kang, S. W.; Choi, B.-S.; Kim, D.; Lee, S. B.; Han, S. W. ACS Nano 2012, 6, 2410. 

    50. [50]

      Yamauchi, Y.; Tonegawa, A.; Komatsu, M.; Wang, H.; Wang, L.; Nemoto, Y.; Suzuki, N.; Kuroda, K. J. Am. Chem. Soc. 2012, 134, 5100. 

    51. [51]

      Koenigsmann, C.; Santulli, A. C.; Gong, K.; Vukmirovic, M. B.; Zhou, W.; Sutter, E.; Wong, S. S.; Adzic, R. R. J. Am. Chem. Soc. 2011, 133, 9783. 

    52. [52]

      Wang, L.; Nemoto, Y.; Yamauchi, Y. J. Am. Chem. Soc. 2011, 133, 9674. 

    53. [53]

      Wang, L.; Yamauchi, Y. Chem. Mater. 2011, 23, 2457.

    54. [54]

      Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. J. Am. Chem. Soc. 2011, 133, 6078. 

    55. [55]

      Xia, B. Y.; Ng, W. T.; Wu, H. B.; Wang, X.; Lou, X. W. Angew. Chem. In. Ed. 2012, 51, 7213. 

    56. [56]

      Chen, Z.; Waje, M.; Li, W.; Yan, Y. Angew. Chem. In. Ed. 2007, 46, 4060. 

  • 加载中
    1. [1]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    2. [2]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    3. [3]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    4. [4]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    5. [5]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    6. [6]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    7. [7]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    8. [8]

      Xingyan LiuYue LiKaili WuPanpan LiYonggang XuXiaowei LiJunhao ZhouYouzhou HeMin FuGuangming JiangSiping WeiIn-situ confined up-conversion Pt/CQDs within linker-defective NH2-MIL-125 to integrate photosensitivity and conductivity for hydrogen production and NO oxidation. Chinese Chemical Letters, 2025, 36(11): 110853-. doi: 10.1016/j.cclet.2025.110853

    9. [9]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    10. [10]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    11. [11]

      Chunshi HeLinqing LiYuanrong SunXuefang WangJie RenJianbo Li . Enhanced durability of a novel thiol-epoxy network thermosets with excellent hygrothermal and chemical resistance. Chinese Chemical Letters, 2025, 36(6): 110905-. doi: 10.1016/j.cclet.2025.110905

    12. [12]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    13. [13]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    14. [14]

      Yueru WeiQi MiaoMiaomiao ZhangWenying ZhangMengxiao ShiRui LiuJingjing SuPengchao SunYongxing Zhao . PtCu nanozyme integrating single atom Pt and Pt subnanoclusters for the sustained treatment of cutaneous melanoma. Chinese Chemical Letters, 2025, 36(12): 111164-. doi: 10.1016/j.cclet.2025.111164

    15. [15]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    16. [16]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    17. [17]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    18. [18]

      Huahong ZHANGYang ZHAORui NINGShuixing WUXiaopeng ZHANG . Coordination equilibrium between cyclometalated Pt(Ⅱ) complexs [Pt(κ3-N^C^N′)(CNXyl)]Cl and [Pt(κ2-N^C^N′)(CNXyl)Cl]. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1840-1850. doi: 10.11862/CJIC.20250136

    19. [19]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    20. [20]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

Metrics
  • PDF Downloads(3)
  • Abstract views(1232)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return