Citation: Li Ran, Lu Yanying, Lei Kaixiang, Li Fujun, Cheng Fangyi, Chen Jun. Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries[J]. Acta Chimica Sinica, ;2017, 75(2): 199-205. doi: 10.6023/A16070329 shu

Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries

  • Corresponding author: Cheng Fangyi, fycheng@nankai.edu.cn.Tel
  • Received Date: 7 July 2016
    Revised Date: 30 September 2016

    Fund Project: Ministry of Education 113016AProject supported by the National Natural Science Foundation of China 21322101, 21231005111 Project B12015

Figures(9)

  • Recycling use is one of the energy and resource saving strategies to dispose depleted batteries, especially primary lithium batteries that employ electrode materials based on expensive and low-abundance elements. In this study, we report in detail the recycling use of discharged Li-AgVO3 primary battery for rechargeable Li-O2 battery. We demonstrate that the discharged Li-AgVO3 cell, in which metallic silver nanoparticles in-situ generated in the vanadium oxide nanowires cathode efficiently catalyze the oxygen reduction/evolution reactions (ORR/OER), can be resumed as rechargeable Li-O2 cells when they are exposed at O2 atmosphere. By controlling the discharge depths, we obtained different cathodes that were composed of vanadium oxide nanowires and silver nanoparticles. As the electrode was discharged to a lower voltage, more silver nanoparticles with larger particle size were distributed on the surface of vanadium oxides, as a result of the sequential reduction of Ag+ to Ag0 and V5+ to V4+. Specifically, the average size of formed Ag nanoparticles was 15 nm and 70 nm at ceased discharge voltage of 2.9 V and 2.0 V, respectively, while the formation of V4+ was observed at discharge voltage lower than 2.3 V. Electrochemical tests indicated that the Li-O2 cells assembled with the AgVO3 cathode discharged to 2.3 V (AgVO3-2.3) exhibited the highest specific capacity (9000 mAh·gcarbon-1), the lowest overpotential and robust cycling performance (up to 95 cycles at the current density of 300 mA·gcarbon-1). The remarkable electrochemical performance of the Li-O2 battery with the AgVO3-2.3 cathode is attributed to the optimization of amount, size and distribution of generated silver nanoparticles that contribute to high electronic conductivity and abundant active sites for the ORR/OER. A combined analysis of electrochemical impedance spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the AgVO3-2.3 cathode enables the reversible formation and decomposition of Li2O2 with lower charge transfer resistance on discharge and charge. The results presented here would provide new insight into the promising recycling application of depleted primary Li-AgVO3 batteries in rechargeable high-capacity Li-O2 batteries.
  • 加载中
    1. [1]

      Takeuchi, K. J.; Marschilok, A. C.; Davis, S. M.; Leising, R. A.; Takeuchi, E. S. Coord. Chem. Rev. 2001, 219, 283.

    2. [2]

      Cheng, F.; Chen, J. J. Mater. Chem. 2011, 21, 9841. 

    3. [3]

      Han, C.; Pi, Y.; An, Q.; Mai, L.; Xie, J.; Xu, X.; Xu, L.; Zhao, Y. Nano Lett. 2012, 12, 4668.

    4. [4]

      Liang, S.; Zhou, J.; Pan, A.; Li, Y.; Chen, T.; Tian, Z.; Ding, H. Mater. Lett. 2012, 74, 176.

    5. [5]

      Zeng, H.; Wang, Q.; Rao, Y. RSC Adv. 2015, 5, 3011.

    6. [6]

      Kang, D. H.; Chen, M.; Ogunseitan, O. A. Environ. Sci. Technol. 2013, 47, 5495. 

    7. [7]

      Liu, Q.; Xu, J.; Xu, D.; Zhang, X. Nat. Commun. 2015, 6, 7892.

    8. [8]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. 

    9. [9]

      Sen, X.; Guo, Y.; Wan, L. Scientia Sinica Chimica 2011, 41, 1229. 

    10. [10]

      Zhang, Z.; Li, L.; Ren, Q.; Xu, Q.; Cao, B. Chin. J. Chem. 2016, 34, 631.

    11. [11]

      Zhang, Y.; Li, Y.; Xia, X.; Wang, X.; Gu, C.; Tu, J. Sci. China Tech. Sci. 2015, 58, 1809. 

    12. [12]

      Chen, J.; Cheng, F. Acc. Chem. Res. 2009, 42, 713. 

    13. [13]

      Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2, 830. 

    14. [14]

    15. [15]

      Cao, Y.; Wei, Z.; He, J.; Zang, J.; Zhang, Q.; Zheng, M.; Dong, Q. F. Energy Environ. Sci. 2012, 5, 9765. 

    16. [16]

      Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172. 

    17. [17]

    18. [18]

    19. [19]

       

    20. [20]

    21. [21]

      Hu, Y.; Zhang, T.; Cheng, F.; Zhao, Q.; Han, X.; Chen, J. Angew. Chem. Int. Ed. 2015, 54, 4338. 

    22. [22]

      Zhang, S.; Li, W.; Li, C.; Chen, J. J. Phys. Chem. B 2006, 110, 24855. 

    23. [23]

      Bao, Q.; Bao, S.; Li, C. M.; Qi, X.; Pan, C.; Zang, J.; Wang, W.; Tang, D. Y. Chem. Mater. 2007, 19, 5965. 

    24. [24]

      Xu, Y.; Han, X.; Zheng, L.; Wei, S.; Xie, Y. Dalton Trans. 2011, 40, 10751.

    25. [25]

      Kirshenbaum, K.; Bock, D. C.; Lee, C. Y.; Zhong, Z.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S. Science 2015, 347, 149. 

    26. [26]

      Wittmaier, D.; Cañas, N. A.; Biswas, I.; Friedrich, K. A. Adv. Energy Mater. 2015, 5, 1500763. 

    27. [27]

    28. [28]

      Kumar, S.; Selvaraj, C.; Scanlon, L. G.; Munichandraiah, N. Phys. Chem. Chem. Phys. 2014, 16, 22830. 

    29. [29]

      Cui, Q.; Zhang, Y.; Peng, Z. Chem. Res. Chin. Univ. 2016, 32, 106. 

    30. [30]

      Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X.; Wen, J.; Miller, D.; Assary, R. S. Nat. Commun. 2014, 5, 4895. 

    31. [31]

      Park, J. B.; Luo, X.; Lu, J.; Shin, C. D.; Yoon, C. S.; Amine, K.; Sun, Y. K. J. Phys. Chem. C 2015, 119, 15036. 

    32. [32]

      Rozier, P.; Savariault, J. M.; Galy, J. J. Solid State Chem. 1996, 122, 303. 

    33. [33]

      Song, J.; Lin, Y.; Yao, H.; Fan, F.; Li, X.; Yu, S. ACS Nano 2009, 3, 653.

    34. [34]

      Lim, S. H.; Kim, B. K.; Yoon, W. Y. J. Appl. Electrochem. 2012, 42, 1045. 

    35. [35]

      Li, F.; Tang, D.-M.; Zhang, T.; Liao, K.; He, P.; Golberg, D.; Yamada, A.; Zhou, H. Adv. Energy Mater. 2015, 5, 1500294. 

    36. [36]

      Cui, Q.; Zhang, Y.; Ma, S.; Peng, Z. Sci. Bull. 2015, 60, 1227.

    37. [37]

      Liu, Q.; Jiang, Y.; Xu, J.; Xu, D.; Chang, Z.; Yin, Y.; Liu, W.; Zhang, X. Nano Res. 2015, 8, 576.

    38. [38]

      Shao, X.; Zhang, T.; Wen, Z. Chin. J. Chem. 2017, 35, 35.

    39. [39]

  • 加载中
    1. [1]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    2. [2]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    3. [3]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    4. [4]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    10. [10]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    11. [11]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    12. [12]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    13. [13]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    14. [14]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    15. [15]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(4)
  • Abstract views(1609)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return