Citation: Luo Feihua, Long Yang, Li Zhengkai, Zhou Xiangge. Palladium Catalyzed Arylation of C(sp3)-H Bonds of Carbonyl β-position in Water[J]. Acta Chimica Sinica, ;2016, 74(10): 805-810. doi: 10.6023/A16060316 shu

Palladium Catalyzed Arylation of C(sp3)-H Bonds of Carbonyl β-position in Water

  • Corresponding author: Zhou Xiangge, 
  • Received Date: 11 July 2016

    Fund Project:

  • The direct activation and functionalization of C-H bonds is fundamentally important in organic synthesis. Among different methods developed, transition metal-catalyzed intermolecular arylation of alkanes, which couples unactivated C(sp3)-H bonds with aryl moieties, is recognized as one of the most powerful strategies to construct valuable arylated alkyl scaffolds. Tremendous progress has thus been made in this field, which usually require harsh reaction conditions such as high temperature and inert atmosphere as well as additives. Furthermore, the reaction media were usually organic solvents with undesirable toxicity and volatility, such as toluene, xylene, tert-amyl alcohol, dichloroethane, etc. Therefore, the development of efficient catalytic unactivated C(sp3)-H arylation under mild reaction conditions is still highly demanded. Herein, we reported a general and practical palladium-catalyzed arylation of β-methylene C(sp3)-H under aqueous conditions by the use of 8-aminoquinoline as directing groups. This method exhibited good to excellent yields up to 96% and good functional group tolerance without other additives and inert gas atmosphere. Meanwhile, the reaction showed good regioselectivity to the β-position of carbonyl group. Mechanism studies showed that the aliphatic Ag-carboxylate salt was critical for this reaction. The silver ion might weaken the C-I bond and function as halogen scavenger for the transformation, while pivalic acid ion might act as base during reaction. A representative procedure for this reaction is as following: To a 10 mL glass tube, N-(quinolin-8-yl) butyramide (42.8 mg, 0.2 mmol), iodobenzene (67 μL, 0.4 mmol), Pd(OAc)2 (4.5 mg), AgPiv (83.6 mg, 0.4 mmol) in 0.4 mL H2O were stirred at 60℃ for 24 h, and then cooled to room temperature. The reaction mixture was extracted with EtOAc. The organic phase was washed with water, dried over magnesium sulfate, and concentrated. The crude product was purified with column chromatography (petroleum/EtOAc) to provide the products in 61%~96% yields.
  • 加载中
    1. [1]

      [1] (a) Yu, J.; Ding, K. Acta Chim. Sinica 2015, 73, 1223. (余金权, 丁奎岭, 化学学报, 2015, 73, 1223.); (b) Yuan, Y.; Song, S.; Jiao, N. Acta Chim. Sinica 2015, 73, 1231. (袁逸之, 宋颂, 焦宁, 化学学报, 2015, 73, 1231.); (c) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235. (赵金钵, 张前, 化学学报, 2015, 73, 1235.)

    2. [2]

      [2] (a) Daugulis, O.; Do, H. Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074; (b) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.-Eur. J. 2010, 16, 2654; (c) Wasa, M.; Engle, K. M.; Yu, J.-Q. Isr. J. Chem. 2010, 50, 605; (d) Li, H.; Li, B.-J.; Shi, Z.-J. Catal. Sci. Technol. 2011, 1, 191; (e) Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902; (f) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976; (g) Rouquet, G.; Chatani, N. Angew. Chem. Int. Ed. 2013, 52, 11726; (h) Zhang, B.; Guan, H.; Liu, B.; Shi, B. Chin. J. Org. Chem. 2014, 34, 1487. (张博, 管晗曦, 刘斌, 史炳锋, 有机化学, 2014, 34, 1487.); (i) Zhou, L.; Lu, W. Acta Chim. Sinica 2015, 73, 1250. (周励宏, 陆文军, 化学学报, 2015, 73, 1250.); (j) Liao, G.; Shi, B. Acta Chim. Sinica 2015, 73, 1283. (廖港, 史炳锋, 化学学报, 2015, 73, 1283.)

    3. [3]

      [3] (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154; (b) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965; (c) Nadres, E. T.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 7.

    4. [4]

      [4] Tran, L. D.; Daugulis, O. Angew. Chem. Int. Ed. 2012, 51, 5188.

    5. [5]

      [5] (a) Xie, Y. J.; Yang, Y. Z.; Huang, L. H.; Zhang, X. B.; Zhang, Y. H. Org. Lett. 2012, 1238; (b) He, G.; Chen, G. Angew. Chem. Int. Ed. 2011, 50, 5192.

    6. [6]

      [6] Rodriguez, N.; Revilla, R. J. A.; FernandezIbanez, M. A.; Carretero, J. C. Chem. Sci. 2013, 4, 175.

    7. [7]

      [7] (a) Zhang, Q.; Chen, K.; Rao, W.-H.; Zhang, Y.-J.; Chen, F.-J.; Shi, B. F. Angew. Chem. Int. Ed. 2013, 52, 13588; (b) Chen, F. J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S. Q.; Shi, B. F. Chem. Sci. 2013, 4, 4187; (c) Zhang, Q.; Yin, X. S.; Zhao, S.; Fang, S. L.; Shi, B. F. Chem. Commun. 2014, 50, 8353; (d) Chen, K.; Zhang, S. Q.; Jiang, H. Z.; Xu, J. W.; Shi, B. F. Chem. Eur. J. 2015, 21, 3264; (e) Yan, S. Y.; Liu, Y. J.; Liu, B.; Liu, Y. H.; Shi, B. F. Chem. Commun. 2015, 51, 4069; (f) Rao, W. H.; Shi, B. F. Org. Lett. 2015, 17, 2784. (g) Zhang, Q.; Yin, X. S.; Chen, K.; Zhang, S. Q.; Shi, B. F. J. Am. Chem. Soc. 2015, 137, 8219.

    8. [8]

      [8] Fan, M. Y.; Ma, D. W. Angew. Chem. Int. Ed. 2013, 52, 12152.

    9. [9]

      [9] (a) Wasa, M.; Chan, K. S. L.; Zhang, X. G.; He, J.; Miura, M.; Yu, J. Q. J. Am. Chem. Soc. 2012, 134, 18570; (b) He, J.; Wasa, M.; Chan, K. S. L.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 3387; (c) He, J.; Li, S. H.; Deng, Y. Q.; Fu, H. Y.; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J. Q. Science 2014, 343, 1216; (d) Li, G.; Wan, L.; Zhang, G. F.; Leow, D. S.; Spangler, J.; Yu, J. Q. J. Am. Chem. Soc. 2015, 137, 4391; (e) He, J.; Shigenari, T.; Yu, J. Q. Angew. Chem. Int. Ed. 2015, 54, 6545; (f) Zhu, R. Y.; Tanaka, K.; Li, G. C.; He, J.; Fu, H. Y.; Li, S. H.; Yu, J. Q. J. Am. Chem. Soc. 2015, 137, 7067.

    10. [10]

      [10] (a) Ye, X. H.; He, Z. R.; Ahmed, T.; Weise, K.; Akhmedov, N. G.; Petersena, J. L.; Shi, X. D. Chem. Sci. 2013, 4, 3712; (b) Song, W.; Lackner, S.; Ackermann, L. Angew. Chem. Int. Ed. 2014, 53, 2477.

    11. [11]

      [11] (a) Fischmeister, C.; Doucet, H. Green Chem. 2011, 13, 741; (b) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437; (c) Simon, M. O.; Li, C. J. Chem. Soc. Rev. 2012, 41, 1415; (d) Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2013, 42, 5744.

    12. [12]

      [12] Selected examples: (a) Turner, G. L.; Morris, J. A.; Greaney, M. F. Angew. Chem. Int. Ed. 2007, 46, 7996; (b) Flegeau, E. F.; Popkin, M. E.; Greaney, M. F. Org. Lett. 2008, 10, 2717; (c) Ohnmacht, S. A.; Mamone, P.; Culshaw, A. J.; Greaney, M. F. Chem. Commun. 2008, 1241; (d) Ohnmacht, S. A.; Culshaw, A. J.; Greaney, M. F. Org. Lett. 2010, 12, 224; (e) Ruiz-Rodrguez, J.; Albericio, F.; Lavilla, R. Chem. Eur. J. 2010, 16, 1124; (f) Nishikata, T.; Abela, A. R.; Lipshutz, B. H. Angew. Chem. Int. Ed. 2010, 49, 781; (g) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Angew. Chem. Int. Ed. 2010, 49, 6629; (h) Joucla, L.; Batail, N.; Djakovitch, L. Adv. Synth. Catal. 2010, 352, 2929; (i) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153; (j) Chen, F.; Min, Q. Q.; Zhang, X. G. J. Org. Chem. 2012, 77, 2992; (k) Su, Y.-X.; Deng, Y.-H.; Ma, T.-T.; Li, Y.-Y.; Sun, L.-P. Green Chem. 2012, 14, 1979; (l) Ackermann, L.; Pospech, J.; Potukuchi, H. K. Org. Lett. 2012, 14, 2146; (m) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2013, 15, 67; (n) Rao, H. H.; Ma, X. Y.; Liu, Q. Z.; Li, Z. F.; Cao, S. L.; Li, C. J. Adv. Synth. Catal. 2013, 355, 2191; (o) Islam, S.; Larrosa, I. Chem. Eur. J. 2013, 19, 15093.

    13. [13]

      [13] Wang, B.; Nack, W. A.; He, G.; Zhang, S. Y.; Chen, G. Chem. Sci. 2014, 5, 3952.

    14. [14]

      [14] (a) Wu, Z.; Luo, F.; Chen, S.; Li, Z.; Xiang, H.; Zhou, X. Chem. Commun. 2013, 49, 7653; (b) Wu, Z.; Chen, S.; Hu, C.; Li, Z.; Xiang, H.; Zhou, X. ChemCatChem 2013, 5, 2839.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    3. [3]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    6. [6]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    7. [7]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    8. [8]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    9. [9]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    17. [17]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    18. [18]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

Metrics
  • PDF Downloads(0)
  • Abstract views(724)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return